Abstract:
An integrated circuit may have pipelined interconnects that are configurable to operate in registered single data rate mode, registered double data rate mode, or in combinational mode. The pipelined interconnect may include routing multiplexers for selecting incoming signals, circuitry for serialization and de-serialization, and memory elements that are configurable to store one or two signals per clock period. Operating the pipeline interconnects in double data rate mode may provide a trade-off between reducing the number of physical wires that are required to implement a design at a constant bandwidth or increasing the bandwidth while keeping the number of physical wires constant.
Abstract:
An integrated circuit includes a signal network and a phase detector circuit. The signal network includes an adjustable delay circuit. The adjustable delay circuit is coupled at an intersection in the signal network between branches of the signal network. The signal network generates a first signal at a first leaf node of the signal network in response to a second signal. The signal network generates a third signal at a second leaf node of the signal network in response to the second signal. The phase detector circuit compares phases of the first and third signals to generate a phase detection signal. The adjustable delay circuit adjusts a delay provided to the first signal relative to the second signal to reduce a skew between the first and third signals based on the phase detection signal indicating that the first and third signals have the skew.
Abstract:
A clock-tree construction method for a configurable clock grid structure having a plurality of sectors and a plurality of wire segments includes defining a clock region within the clock grid structure and constructing an H-tree that has a smallest size to cover the clock region. The method further includes aligning the clock region within the H-tree, pruning the H-tree and removing an unused segment from the H-tree. The method further includes performing a tree height reduction procedure to the pruned H-tree, and generating a clock tree with a reduced size or a reduced height from the tree height reduction procedure.
Abstract:
An integrated circuit may have circuitry that includes a storage circuit, a processing circuit, and at least one state register to implement a finite-state machine. The storage circuit may store base addresses and output data for each state of the finite-state machine. The storage circuit may further store offset values that are based on the input data to the finite-state machine and the state transition from a current state to a next state caused by the input data. The processing circuit may compute the address of the storage circuit location where the output data of the next state is stored. The computation of this address may depend on the offset value and base address of the current state. The state register may receive the address from the processing circuit, store the address, and perform the corresponding memory access operation on the storage circuit.