Abstract:
Electronic device processing systems including side storage pods are described. One electronic device processing system has a side storage pod having a first chamber configured to receive a side storage container; a panel having a panel opening; the panel configured to be coupled between a side storage container and an equipment front end module; a side storage container received in the first chamber; and an exhaust conduit configured to be coupled to the side storage container received and extending to an exterior of the first chamber.
Abstract:
Slit valve doors including a door body made entirely of an Al2O3 ceramic material, and a seal coupled to the door body. Slit valve door assemblies and slit valve assemblies including the slit valve door are disclosed, as are numerous other aspects.
Abstract:
In one aspect, a valve assembly adapted to seal an opening in a chamber is disclosed. Valve assembly includes a housing being adapted for coupling to a chamber surface having the opening therein, the housing including a threshold portion positioned adjacent to the chamber opening, the threshold portion having one or more inlets adapted to supply gas to an interior region of the housing adjacent to the chamber opening; and a sealing surface adapted to selectively (1) seal the opening, and (2) retract from the opening so as not to obstruct substrate passage. Numerous other system aspects are provided, as are methods and computer program products in accordance with these and other aspects.
Abstract:
Disclosed herein is a substrate support assembly having a ground electrode mesh disposed therein along a side surface of the substrate support assembly. The substrate support assembly has a body. The body has an outer top surface, an outer side surface and an outer bottom surface enclosing an interior of the body. The body has a ground electrode mesh disposed in the interior of the body and adjacent the outer side surface, wherein the ground electrode does not extend through to the outer top surface or the outer side surface.
Abstract:
A factory interface for an electronic device manufacturing system can include a load lock disposed within the interior volume of a factory interface and a factory interface robot disposed within the interior volume of the factory interface. The factory interface robot can be configured to transfer substrates between a first set of substrate carriers and the first load lock. The factory interface robot can comprise a vertical tower, a plurality of links, and an end effector.
Abstract:
Embodiments described herein include processes and apparatuses relate to epitaxial deposition. A method for epitaxially depositing a material is provided and includes positioning a substrate on a substrate support surface of a susceptor within a process volume of a chamber body, where the process volume contains upper and lower chamber regions. The method includes flowing a process gas containing one or more chemical precursors from an upper gas inlet on a first side of the chamber body, across the substrate, and to an upper gas outlet on a second side of the chamber body, flowing a purge gas from a lower gas inlet on the first side of the chamber body, across the lower surface of the susceptor, and to a lower gas outlet on the second side of the chamber body, and maintaining a pressure of the lower chamber region greater than a pressure of the upper chamber region.
Abstract:
A lid or other chamber component for a process chamber comprises a) at least one surface comprising a first ceramic material, wherein the first ceramic material comprises Y3Al5O12 and b) an internal region beneath the at least one surface comprising a second ceramic material, wherein the second ceramic material comprises a combination of Al2O3 and ZrO2.
Abstract:
The present disclosure generally relates to a process chamber for processing of semiconductor substrates. The process chamber includes an upper lamp assembly, a lower lamp assembly, a susceptor, an upper window disposed between the substrate support and the upper lamp assembly, a lower window disposed between the lower lamp assembly and the substrate support, an inject ring, and a base ring. The susceptor includes a movement assembly. The movement assembly includes a bearing feedthrough assembly. The bearing feedthrough assembly is a ferrofluidic feedthrough assembly and functions as a ferrofluidic bearing. The bearing feedthrough assembly includes a shaft coupled to the support shaft. The shaft is rotated within the bearing feedthrough assembly. The bearing feedthrough assembly is combined with a first linear spline and a second linear spline.
Abstract:
Apparatus for extending substrate queue time for hybrid bonding by preserving plasma activation. In some embodiments, the apparatus may include an environmentally controllable space with a support for holding a die or a substrate, a gas velocity accelerator that recirculates one or more gases laterally across the support, a filter, a humidifier apparatus that is fluidly connected to the environmentally controllable space, wherein the humidifier apparatus enables controllable humidity levels within the environmentally controllable space, a pressurizing apparatus fluidly connected to the humidifier apparatus on an output and fluidly connected to at least one gas supply on an input, a relative humidity (RH) sensor positioned within the environmentally controllable space, and an environment controller in communication with at least the humidifier apparatus and the RH sensor, wherein the environment controller is configured to maintain an RH level of approximately 80% to approximately 95%.
Abstract:
FIG. 1 is a front, top perspective view of a mainframe for a dual-robot substrate processing system in accordance with the present design. FIG. 2 is a left side elevational view of the present design. FIG. 3 is a right side elevational view of the present design. FIG. 4 is a front elevational view of the present design. FIG. 5 is a rear elevational view of the present design. FIG. 6 is a top plan view of the present design. FIG. 7 is a bottom plan view of the second embodiment of the present design; and, FIG. 8 is a front, top perspective view of the present design, showing unclaimed components attached thereto. The broken lines shown in the figures are directed to unclaimed portions of the mainframe and/or unclaimed components attached to the mainframe that are for illustrative purposes only and form no part of the claimed design.