-
公开(公告)号:US11133210B2
公开(公告)日:2021-09-28
申请号:US16443185
申请日:2019-06-17
Applicant: Applied Materials, Inc.
Inventor: Dale R. Du Bois , Juan Carlos Rocha-Alvarez , Sanjeev Baluja , Ganesh Balasubramanian , Lipyeow Yap , Jianhua Zhou , Thomas Nowak
IPC: H01L21/324 , C23C16/458 , H01L21/68 , H01L21/687 , H01L21/67 , B05C13/00 , H01J37/32
Abstract: A method and apparatus for positioning and heating a substrate in a chamber are provided. In one embodiment, the apparatus comprises a substrate support assembly having a support surface adapted to receive the substrate and a plurality of centering fingers for supporting the substrate at a distance parallel to the support surface and for centering the substrate relative to a reference axis substantially perpendicular to the support surface. The plurality of the centering fingers are movably disposed along a periphery of the support surface, and each of the plurality of centering fingers comprises a first end portion for either contacting or supporting a peripheral edge of the substrate.
-
公开(公告)号:US10478868B2
公开(公告)日:2019-11-19
申请号:US15349443
申请日:2016-11-11
Applicant: Applied Materials, Inc.
Inventor: Thomas Nowak
Abstract: Embodiments described herein generally relate to a particle collection apparatus and probe head for the collection of particles on process tool components. In one embodiment, a particle collection apparatus for counting particles present on a processing tool component is disclosed herein. The particle collection apparatus includes a particle collector. The particle collector is configured to scan a processing tool component and collect particles collected from the processing tool component. The particle collector includes a body and a probe head coupled to the body. The probe head has a probe body and a controlled spacing element. The controlled spacing element is coupled to the probe body and is configured to form a uniform manifold between the probe body and the processing tool component.
-
公开(公告)号:US10094486B2
公开(公告)日:2018-10-09
申请号:US14932384
申请日:2015-11-04
Applicant: Applied Materials, Inc.
Inventor: Ramprakash Sankarakrishnan , Dale R. Du Bois , Ganesh Balasubramanian , Karthik Janakiraman , Juan Carlos Rocha-Alvarez , Thomas Nowak , Visweswaren Sivaramakrishnan , Hichem M'Saad
Abstract: A method and apparatus for cleaning a process chamber are provided. In one embodiment, a process chamber is provided that includes a remote plasma source and a process chamber having at least two processing regions. Each processing region includes a substrate support assembly disposed in the processing region, a gas distribution system configured to provide gas into the processing region above the substrate support assembly, and a gas passage configured to provide gas into the processing region below the substrate support assembly. A first gas conduit is configured to flow a cleaning agent from the remote plasma source through the gas distribution assembly in each processing region while a second gas conduit is configured to divert a portion of the cleaning agent from the first gas conduit to the gas passage of each processing region.
-
公开(公告)号:US10060032B2
公开(公告)日:2018-08-28
申请号:US15802496
申请日:2017-11-03
Applicant: Applied Materials, Inc.
Inventor: Nagarajan Rajagopalan , Xinhai Han , Michael Wenyoung Tsiang , Masaki Ogata , Zhijun Jiang , Juan Carlos Rocha-Alvarez , Thomas Nowak , Jianhua Zhou , Ramprakash Sankarakrishnan , Amit Kumar Bansal , Jeongmin Lee , Todd Egan , Edward Budiarto , Dmitriy Panasyuk , Terrance Y. Lee , Jian J. Chen , Mohamad A. Ayoub , Heung Lak Park , Patrick Reilly , Shahid Shaikh , Bok Hoen Kim , Sergey Starik , Ganesh Balasubramanian
IPC: G01B11/06 , C23C16/52 , H01L21/687 , C23C16/509 , H01L21/67 , G01N21/55 , G01N21/65 , C23C16/458 , C23C16/46 , C23C16/50 , C23C16/505 , C23C16/455 , H01L21/00
CPC classification number: C23C16/52 , C23C16/45565 , C23C16/4557 , C23C16/458 , C23C16/46 , C23C16/50 , C23C16/505 , C23C16/509 , C23C16/5096 , G01B11/0625 , G01B11/0683 , G01N21/55 , G01N21/658 , G01N2201/1222 , H01L21/00 , H01L21/67248 , H01L21/67253 , H01L21/687
Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
-
公开(公告)号:US09870935B2
公开(公告)日:2018-01-16
申请号:US14839656
申请日:2015-08-28
Applicant: Applied Materials, Inc.
Inventor: Edward W. Budiarto , Majeed A. Foad , Ralf Hofmann , Thomas Nowak , Todd Egan , Mehdi Vaez-Iravani
IPC: H01L21/00 , H01L21/67 , H01L21/02 , H01L21/033 , H01L21/285 , H01L21/66
CPC classification number: H01L21/67253 , G03F1/22 , G03F1/24 , H01L21/02631 , H01L21/0332 , H01L21/0337 , H01L21/2855 , H01L22/12 , H01L22/26
Abstract: A monitoring and deposition control system and method of operation thereof including: a deposition chamber for depositing a material layer on a substrate; a sensor array for monitoring deposition of the material layer for changes in a layer thickness of the material layer during deposition; and a processing unit for adjusting deposition parameters based on the changes in the layer thickness during deposition.
-
公开(公告)号:US20150226540A1
公开(公告)日:2015-08-13
申请号:US14422148
申请日:2013-10-23
Applicant: Applied Materials, Inc.
Inventor: Nagarajan Rajagopalan , Xinhai Han , Michael Tsiang , Masaki Ogata , Zhijun Jiang , Juan Carlos Rocha-Alvarez , Thomas Nowak , Jianhua Zhou , Ramprakash Sankarakrishnan , Ganesh Balasubramanian , Amit Kumar Bansal , Jeongmin Lee , Todd Egan , Edward Budiarto , Dmitriy Panasyuk , Terrance Y. Lee , Jian J. Chen , Mohamad A. Ayoub , Heung Lak Park , Patrick Reilly , Shahid Shaikh , Bok Hoen Kim , Sergey Starik
IPC: G01B11/06 , C23C16/46 , C23C16/505 , C23C16/50 , C23C16/458
CPC classification number: C23C16/52 , C23C16/45565 , C23C16/4557 , C23C16/458 , C23C16/46 , C23C16/50 , C23C16/505 , C23C16/509 , C23C16/5096 , G01B11/0625 , G01B11/0683 , G01N21/55 , G01N21/658 , G01N2201/1222 , H01L21/00 , H01L21/67248 , H01L21/67253 , H01L21/687
Abstract: Apparatus and method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
Abstract translation: 描述了根据PECVD工艺处理衬底的设备和方法。 调整衬底的温度分布以改变衬底上的沉积速率分布。 调整等离子体密度分布以改变跨衬底的沉积速率分布。 暴露于等离子体的室表面被加热以改善等离子体密度均匀性并减少在室表面上形成低质量的沉积物。 原位计量可用于监测沉积过程的进展并触发涉及衬底温度曲线,等离子体密度分布,压力,温度和反应物流动的控制动作。
-
公开(公告)号:US11898249B2
公开(公告)日:2024-02-13
申请号:US18108989
申请日:2023-02-13
Applicant: Applied Materials, Inc.
Inventor: Nagarajan Rajagopalan , Xinhai Han , Michael Wenyoung Tsiang , Masaki Ogata , Zhijun Jiang , Juan Carlos Rocha-Alvarez , Thomas Nowak , Jianhua Zhou , Ramprakash Sankarakrishnan , Amit Kumar Bansal , Jeongmin Lee , Todd Egan , Edward W. Budiarto , Dmitriy Panasyuk , Terrance Y. Lee , Jian J. Chen , Mohamad A. Ayoub , Heung Lak Park , Patrick Reilly , Shahid Shaikh , Bok Hoen Kim , Sergey Starik , Ganesh Balasubramanian
IPC: C23C16/52 , G01B11/06 , H01L21/687 , H01L21/67 , C23C16/509 , G01N21/55 , G01N21/65 , H01L21/00 , C23C16/458 , C23C16/46 , C23C16/50 , C23C16/505 , C23C16/455
CPC classification number: C23C16/52 , C23C16/458 , C23C16/4557 , C23C16/45565 , C23C16/46 , C23C16/50 , C23C16/505 , C23C16/509 , C23C16/5096 , G01B11/0625 , G01B11/0683 , G01N21/55 , G01N21/658 , H01L21/00 , H01L21/67248 , H01L21/67253 , H01L21/687 , G01N2201/1222
Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
-
公开(公告)号:US09506145B2
公开(公告)日:2016-11-29
申请号:US15180514
申请日:2016-06-13
Applicant: Applied Materials, Inc.
Inventor: Sanjeev Baluja , Alexandros T. Demos , Kelvin Chan , Juan Carlos Rocha-Alvarez , Scott A. Hendrickson , Abhijit Kangude , Inna Turevsky , Mahendra Chhabra , Thomas Nowak , Daping Yao , Bo Xie , Daemian Raj
IPC: H01L21/00 , C23C16/44 , C23C16/48 , C23C16/455
CPC classification number: C23C16/4405 , B08B7/0021 , B08B7/0057 , C11D11/0041 , C23C16/45565 , C23C16/482
Abstract: A cleaning method for a UV chamber involves providing a first cleaning gas, a second cleaning gas, and a purge gas to one or more openings in the chamber. The first cleaning gas may be an oxygen containing gas, such as ozone, to remove carbon residues. The second cleaning gas may be a remote plasma of NF3 and O2 to remove silicon residues. The UV chamber may have two UV transparent showerheads, which together with a UV window in the chamber lid, define a gas volume proximate the UV window and a distribution volume below the gas volume. A purge gas may be flowed through the gas volume while one or more of the cleaning gases is flowed into the distribution volume to prevent the cleaning gases from impinging on the UV transparent window.
-
公开(公告)号:US10774423B2
公开(公告)日:2020-09-15
申请号:US14552273
申请日:2014-11-24
Applicant: Applied Materials, Inc.
Inventor: Karthik Janakiraman , Thomas Nowak , Juan Carlos Rocha-Alvarez , Mark A. Fodor , Dale R. Du Bois , Amit Bansal , Mohamad Ayoub , Eller Y. Juco , Visweswaren Sivaramakrishnan , Hichem M'Saad
IPC: C23C16/455 , C23C16/458 , C23C16/44 , C23C16/503 , C23C16/505 , H01J37/32 , C23C16/509
Abstract: An apparatus and method are provided for controlling the intensity and distribution of a plasma discharge in a plasma chamber. In one embodiment, a shaped electrode is embedded in a substrate support to provide an electric field with radial and axial components inside the chamber. In another embodiment, the face plate electrode of the showerhead assembly is divided into zones by isolators, enabling different voltages to be applied to the different zones. Additionally, one or more electrodes may be embedded in the chamber side walls.
-
公开(公告)号:US09816187B2
公开(公告)日:2017-11-14
申请号:US15278455
申请日:2016-09-28
Applicant: Applied Materials, Inc.
Inventor: Nagarajan Rajagopalan , Xinhai Han , Michael Wenyoung Tsiang , Masaki Ogata , Zhijun Jiang , Juan Carlos Rocha-Alvarez , Thomas Nowak , Jianhua Zhou , Ramprakash Sankarakrishnan , Amit Kumar Bansal , Jeongmin Lee , Todd Egan , Edward Budiarto , Dmitriy Panasyuk , Terrance Y. Lee , Jian J. Chen , Mohamad A. Ayoub , Heung Lak Park , Patrick Reilly , Shahid Shaikh , Bok Hoen Kim , Sergey Starik , Ganesh Balasubramanian
IPC: G01N21/00 , C23C16/52 , G01B11/06 , H01L21/00 , H01L21/687 , H01L21/67 , C23C16/509 , C23C16/458 , C23C16/46 , C23C16/50 , C23C16/505 , G01N21/55 , G01N21/65 , C23C16/455
CPC classification number: C23C16/52 , C23C16/45565 , C23C16/4557 , C23C16/458 , C23C16/46 , C23C16/50 , C23C16/505 , C23C16/509 , C23C16/5096 , G01B11/0625 , G01B11/0683 , G01N21/55 , G01N21/658 , G01N2201/1222 , H01L21/00 , H01L21/67248 , H01L21/67253 , H01L21/687
Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
-
-
-
-
-
-
-
-
-