Abstract:
A wafer level vertical diode package structure includes a first semiconductor layer, a second semiconductor layer, an insulative unit, a first conductive structure, and a second conductive structure. The second semiconductor layer is connected with one surface of the first semiconductor layer. The insulative unit is disposed around a lateral side of the first semiconductor layer and a lateral side of the second semiconductor layer. The first conductive structure is formed on a top surface of the first semiconductor layer and on one lateral side of the insulative layer. The second conductive structure is formed on a top surface of the second semiconductor layer and on another opposite lateral side of the insulative layer.
Abstract:
A white light source has a substrate with a blue light-emitting diode placed thereon and a cap layer enclosing the blue light-emitting diode. The cap layer includes a mixture of silicon and phosphor blend at ratio of 1:0.2-0.5. The phosphor blend includes a red phosphor, a green phosphor and a yellow phosphor.
Abstract:
An LED chip package structure with thick guiding pin includes a plurality of conductive pins separated from each other, an insulative casing, a plurality of LED chips, and a packaging colloid. The insulative casing covers a bottom side of each conductive pin to form an injection concave groove for exposing a top surface of each conductive pin. Two lateral sides of each conductive pin are extended outward from the insulative casing. The LED chips are arranged in the injection concave groove, and each LED chip has a positive electrode side and a negative electrode side respectively and electrically connected with different conductive pins. In addition, the packaging colloid is filled into the injection concave groove for covering the LED chips.
Abstract:
A wafer-level electro-optical semiconductor fabrication mechanism and method for the same which improves upon traditional electro-optical semiconductor grain packaging methods. The present invention electrically connects semiconductor grains to the grains on a top surface of a wafer, this is done by either screen-printing or steel board-printing solder or silver paste onto the wafer. After that, the wafer is processed using the following steps: processing the devices, bonding with wire, packaging the wafer and finally cutting the wafer. Using this method raises the production yield while production times and costs are reduced. The wafer-level electro-optical semiconductor fabrication mechanism comprises: a wafer, an electro-optical semiconductor grain and conductive materials.
Abstract:
A method for calculating out an optimum arrangement pitch between each two LED chip package units, including: providing a backlight module with a predetermined brightness value and a predetermined material information that a customer needs; determining what brightness level and amount of LED chip package units need to be used by a designer according to the brightness value and the material information of the backlight module; and dividedly arranging the LED chip package units determined by the designer on a light-entering area of the backlight module in order to define what the optimum arrangement pitch between each two LED chip package units is.
Abstract:
A uniform light generating system for testing an image-sensing device includes a light-generating unit, a light-transmitting unit, a light-diffusing unit, and a lens unit. The light-generating unit has a substrate and a plurality of light-emitting elements electrically disposed on the substrate. The light-transmitting unit has one side communicated with the light-generating unit for receiving and uniformizing light beams projected from the light-emitting elements. The light-diffusing unit has one side disposed on the other side of the light-transmitting unit for receiving and diffusing the light beams that have passed through the light-transmitting unit. The lens unit is disposed on the other side of the light-diffusing unit for transmitting the light beams that have passed through the light-diffusing unit to the image-sensing device.
Abstract:
A manufacturing method of white light LED and a structure thereof include first, a substrate being prepared to be formed as a consecutively connected holder, on a first electrode of which non-conductive fluorescent glue is coated to form a fluorescent layer, on which a blue light chip is fixed; second, two conducting wires being welded onto the chip and electrically connected to both the first electrode and the second electrode of the holder respectively, finally, glue body encapsulating the holder, the fluorescent layer, the chip, and the two conducting wires to form a photic zone, over which a frame body encloses; furthermore, a window being formed on the frame body and provided for making the photic zone exposed. When blue light chip is excited to generate blue light, which will further excite the fluorescent layer to emit yellow light, then both blue light and yellow light will be dispersed through the photic zone to generate a uniform light source, which may output light longitudinally and collectively, making the output power promoted notably and the lightness enhanced significantly.
Abstract:
An LED package structure for increasing light-emitting efficiency includes: a substrate unit, and a plurality of fluorescence colloid units, LED units, conductive units and opaque units. The substrate unit has a main body and a plurality of through holes passing through the main body. Each fluorescence colloid unit is received in the corresponding through hole and having an installed surface. Each LED unit has a light-emitting surface disposed on the corresponding fluorescence colloid unit and facing the installed surface of the corresponding fluorescence colloid units. Each conductive unit is electrically connected between each two electrode areas that have the same pole and are respectively arranged on each LED unit and the main body. Each opaque unit is disposed on two corresponding lateral faces of the main body for covering the installed surface of the corresponding fluorescence colloid unit, the corresponding LED unit, and the corresponding conductive units.
Abstract:
The present invention is related to a color-mixture display unit and an image display apparatus using the same, wherein the image display apparatus includes at least one color-mixture pixel which is pre-disposed at plates of a light box so that a pattern is formed. Each of the color-mixture pixels is equipped with a red filter, a green filter and a blue filter, or equipped with a black filter or equipped with a transparent filter. At least one color-mixture LED is disposed within the light box and provides a backlight for the color-mixture pixel. In this regard, the color-mixture LEDs are controlled by an image controller and provide various color light beams with the color-mixture pixels. In addition, arrangement of each color filter within the color-mixture pixel is utilized so that color-mixture effect of dynamic image is shown.
Abstract:
A semiconductor substrate structure includes a substrate having a trench formed thereon, a polymer composite material supplied into the trench and an electroplate conductive layer formed on the substrate. Further, a semiconductor substrate processing method includes the steps of: providing a substrate forming a trench thereon, supplying a polymer composite material into the trench, polishing a surface of the substrate and forming a covering material on the surface of the substrate. Therefore, the method is provided for combining the polymer composite material into the substrate, thereby to raise cutting precision and strength of the semiconductor substrate structure.