Abstract:
According to the embodiments provided herein, a photovoltaic device can have an energy side configured to be exposed to a light source. The photovoltaic device can include an absorber layer. The absorber layer can include a first surface facing the energy side and a thickness defined between the first surface and a second surface. The absorber layer can include mercury having a mole fraction y, cadmium having a mole fraction (1−y), and tellurium. The mole fraction y of the mercury can vary through the thickness of the absorber layer with distance from the first surface of the absorber layer.
Abstract:
Provided are structures and methods for doping polycrystalline thin film semiconductor materials in photovoltaic devices. Embodiments include methods for forming and treating a photovoltaic semiconductor absorber layer.
Abstract:
According to the embodiments provided herein, a method for forming a photovoltaic device can include depositing a plurality of semiconductor layers. The plurality of semiconductor layers can include a doped layer that is doped with a group V dopant. The doped layer can include cadmium selenide or cadmium telluride. The method can include annealing the plurality of semiconductor layers to form an absorber layer.
Abstract:
Provided are structures and methods for doping polycrystalline thin film semiconductor materials in photovoltaic devices. Embodiments include methods for forming and treating a photovoltaic semiconductor absorber layer.
Abstract:
According to the embodiments provided herein, a method for doping an absorber layer can include contacting the absorber layer with an annealing compound. The annealing compound can include cadmium chloride and a group V salt comprising an anion and a cation. The anion, the cation, or both can include a group V element. The method can include annealing the absorber layer, whereby the absorber layer is doped with at least a portion of the group V element of the annealing compound.
Abstract:
A photovoltaic device (100) can include an absorber layer (160). The absorber layer (160) can be doped p-type with a Group V dopant and can have a carrier concentration of the Group V dopant greater than 4×1015cm-3. The absorber layer (160) can include oxygen in a central region of the absorber layer (160). The absorber layer (160) can include an alkali metal in the central region of the absorber layer (160). Methods for carrier activation can include exposing an absorber layer (160) to an annealing compound in a reducing environment (220). The annealing compound (224) can include cadmium chloride and an alkali metal chloride.
Abstract:
An inline vacuum deposition system contains thermal source pairs configured in adjacent deposition zones. Dopant sources allow the electrical characteristics of the sequentially formed layers to be controlled for a preferred deposition growth profile.