Abstract:
The present application provides an image stitching method, apparatus and device based on reinforcement learning and a storage medium. The method includes: acquiring initial calibration parameters, collecting a sample image and position information of a motion platform; setting a negative reward function; acquiring a state set and a negative reward value set according to a randomly generated action set, the initial calibration parameters, the position information of the motion platform and the negative reward function to construct a probability kinematics model; constructing a state value function based on an occurrence probability of the state, and acquiring an optimal action by optimizing the state value function; and acquiring optimized calibration parameters through the optimal action and the initial calibration parameters, and carrying out image stitching on corresponding sample images through the optimized calibration parameters. The application solves the technical problem of low image stitching quality in the prior art.
Abstract:
A three-dimensional measurement method combines the three-step phase shift method to embed the marker line information into the sinusoidal stripe pattern to obtain the target stripe pattern. The target stripe pattern is projected onto the surface of the object to be measured, and the wrapped phase image, mean intensity image and modulated intensity image of the stripe pattern collected by the left and right cameras are solved. The mask image according to the mean intensity image and modulation intensity image is solved to extract the marker line. The spatial phase unwrapping starting from the marker line in the wrapped phase image is performed to obtain the spatial phase. The spatial phase matching based on the unique correspondence between the left and right cameras based on the spatial phase of the marker line is performed, the best matching point of the right camera is obtained.
Abstract:
A method for manufacturing a core-shell coaxial gallium nitride (GaN) piezoelectric nanogenerator is provided. A mask covering a center part of a gallium nitride wafer is removed. An electrodeless photoelectrochemical etching is performed on the gallium nitride wafer to form a primary GaN nanowire array on a surface of the gallium nitride wafer. A precious metal layer provided on the surface of the gallium nitride wafer is removed and an alumina layer is deposited on the surface of the gallium nitride wafer to cover the primary GaN nanowire array to obtain a core-shell coaxial GaN nanowire array. A first conductive layer is provided on a flexible substrate to which the core-shell coaxial GaN nanowire array is transferred. A second conductive layer is provided at a top end of the core-shell coaxial GaN nanowire array, and is connected to an external circuit to obtain the core-shell coaxial GaN piezoelectric nanogenerator.
Abstract:
A flexure-based continuous ejector pin mechanism for Mini/Micro chip mass transfer includes a first drive frame, a second drive frame, a mounting base, a first thorn die attach drive device, a second thorn die attach drive device, first flexible hinges, second flexible hinges, and a pricking pin. The second drive frame and the first drive frame are connected through the first flexible hinge. The mounting base is connected to a left side and a right side of the second drive frame through the second flexible hinges. Compared with a laser transfer technology, the flexible movable thorn die attach device has lower cost and higher accuracy; compared with a vacuum nozzle transfer technology, the flexible movable thorn die attach device has higher transfer efficiency and quality; and compared with a conventional thorn die attach device, the flexible movable thorn die attach device has higher transfer efficiency and precision.
Abstract:
A method and device for preparing a graphene-based polyethylene glycol phase change material. The method includes: (S1) dispersing carbon black in deionized water to form a carbon black dispersion; immersing polyurethane sponge in the carbon black dispersion; and taking out polyurethane sponge followed by drying to obtain a polyurethane sponge-carbon black combination; (S2) subjecting the polyurethane sponge-carbon black combination to a first electrical discharge machining to obtain a first intermediate; (S3) ultrasonically mixing the first intermediate, polyethylene glycol, and MgO to obtain a second intermediate; (S4) subjecting the second intermediate to a second electrical discharge machining to obtain a third intermediate; (S5) subjecting the third intermediate to acid washing to obtain a fourth intermediate, and drying the fourth intermediate; (S6) injecting polyethylene glycol into the fourth intermediate followed by stirring in a mold and drying to prepare the graphene-based polyethylene glycol phase change material.
Abstract:
There are provided a method and an interface system for Bidirectional Synchronous Serial (BISS) protocol data decoding. The method includes: an MA drive module receiving an enable signal en and transmitting an MA clock signal to an SL receiving module, and then the SL receiving module detecting a trigger signal of SL; when a start bit of the SL is detected by the SL receiving module, the SL receiving module reading SL data; after the SL data is read, the SL receiving module transmitting a done signal to the MA drive module to stop operation of the MA drive module and transmitting a did signal to a CRC check module; and after the did signal is received by the CRC check module, the CRC check module performing CRC check on the SL data and outputting a correct position value after the check is completed.
Abstract:
A common-stator macro/micro integrated precision motion one-dimensional linear motor assembly, includes a base, linear guide rails, slide blocks, a U-shaped linear motor stator, a macro motion rotor, a micro motion rotor and a macro/micro integrated platform. A macro and micro motion platforms are connected to form an integrated platform through an elastic member, an outer frame of the macro/micro integrated platform is mounted on the linear guide rails and the slide blocks, the U-shaped linear motor stator is arranged on the base, rotors are respectively mounted on the macro and micro motion platforms, and large-scale overall high-speed motion can be realized when macro and micro rotors are simultaneously driven, and when a motion deviation occurs, the micro motion platform realizes precise displacement output by virtue of elastic deformation due to small inertia and zero friction, and high-frequency motion deviation compensation can be realized by virtue of individual drive.
Abstract:
The present invention proposes a macro-micro integrated compound platform with adjustable dynamic characteristics. When a macro platform mover and a micro platform mover are driven at the same time, the whole large-scale high-speed motion can be realized; when a motion deviation occurs, a micro motion platform can be driven separately to realize the high-frequency motion deviation compensation, because the micro motion platform has small inertia and zero friction and achieves precision displacement output through elastic deformation. The macro-micro integrated compound platform can realize high-speed precision motion through compound motion control, is mounted and used in a manner consistent with the traditional platform, and is convenient to be popularized and applied; a stiffness and frequency adjustment mechanism and a variable damper are arranged, so that the micro motion platform can transfer the motion of a macro motion platform and isolate the vibration at any frequency, and realize high-precision displacement compensation; meanwhile, damping of the variable damper is matched with the stiffness and frequency parameters to ensure the high-precision displacement compensation at any frequency and increase the range of working frequency.
Abstract:
The present disclosure relates to a macro-micro composite grating ruler measuring system based on conversion and amplification in vertical and horizontal directions. The macro-micro composite grating ruler includes a grating ruler, a macro-micro reading system moving with respect to the grating ruler, and a counting and image processing module. The macro-micro reading system faces grating strip datum and is parallel to the grating ruler. The system further includes a measuring reference line. The measuring reference line obtained by the image sensor together with grating strips forms an image overlap in the counting and image processing module. The measuring reference line and the grating strip jointly include an angle θ. With the foregoing configuration, the present invention is compatible with the existing incremental grating rulers and absolute grating rulers, so is highly applicable.
Abstract:
A method of assisted mounting and error compensation for absolute grating ruler comprises: (1) when mounting a CMOS sensor and a grating ruler body, the CMOS sensor reads an upper and a lower sample windows, and due to an angle existing between the grating ruler body and the CMOS sensor, a difference exists between the numbers of the upper and lower sample windows, and by continually adjusting the grating ruler body or the CMOS sensor, the code reading difference minimized so that the angle is zeroed; (2) when mounting the grating ruler body and a mechanic housing, it is moved by a fixed displacement in a motion direction, and a grating encoding reading is recorded and an error compensating amount is obtained which serves as error compensation value in an actual motion to correct a cumulative error introduced by the angle between the grating ruler body and the motion direction.