IMPROVED NAVIGATION FOR A VEHICLE BY IMPLEMENTING TWO OPERATING MODES

    公开(公告)号:US20180364735A1

    公开(公告)日:2018-12-20

    申请号:US15780856

    申请日:2015-12-02

    Applicant: HUSQVARNA AB

    Abstract: A robotic lawnmower (100) for movable operation within a work area (205) has a satellite navigation device (190), a landmark scanner (193) and a controller (110). The controller causes the robotic lawnmower (100) to movably operate within the work area (205) in a first operating mode, the first operating mode being based on positions determined from satellite signals received by the satellite navigation device (190). The controller determines that a position cannot be reliably determined based on satellite signals received by the satellite navigation device (190), and in response thereto causes the robotic lawnmower (100) to movably operate within the work area (205) in a second operating mode. In the second operating mode, the controller receives scanning information from said landmark scanner (193) and identifies at least one landmark based on the received scanning information and determines a landmark-based position estimate. The controller defines a search space using the landmark-based position estimate, and the satellite navigation device (190) is reconstructed based on the defined search space. Once the satellite navigation device (190) has been reconstructed, the controller causes the robotic lawnmower (100) to again operate in the first

    Navigation for a robotic work tool
    14.
    发明授权

    公开(公告)号:US11112505B2

    公开(公告)日:2021-09-07

    申请号:US16803276

    申请日:2020-02-27

    Applicant: HUSQVARNA AB

    Abstract: A robotic work tool system, comprising a robotic work tool, said robotic work tool comprising a position determining device for determining a current position and at least one deduced reckoning (also known as dead reckoning) navigation sensor, the robotic work tool being configured to determine that a reliable and accurate current position is possible to determine and in response thereto determine an expected navigation parameter, compare the expected navigation parameter to a current navigation parameter to determine a navigation error, determine if the navigation error is negligible, and if the navigation error is not negligible, cause the robotic work tool to change its trajectory to accommodate for the navigation error. Wherein the robotic work tool (100) is further configured to change the trajectory by aligning the trajectory with an expected trajectory, wherein the expected trajectory is determined as an expected direction originating from an expected position and wherein the robotic work tool (100) is configured to change the trajectory by returning to a position that should have been visited and aligning the trajectory with the expected direction originating from the expected position, said position that should have been visited being aligned with the expected direction originating from the expected position.

    Navigation for a vehicle by implementing two operating modes

    公开(公告)号:US10649466B2

    公开(公告)日:2020-05-12

    申请号:US15780856

    申请日:2015-12-02

    Applicant: HUSQVARNA AB

    Abstract: A robotic lawnmower (100) for movable operation within a work area (205) has a satellite navigation device (190), a landmark scanner (193) and a controller (110). The controller causes the robotic lawnmower (100) to movably operate within the work area (205) in a first operating mode, the first operating mode being based on positions determined from satellite signals received by the satellite navigation device (190). The controller determines that a position cannot be reliably determined based on satellite signals received by the satellite navigation device (190), and in response thereto causes the robotic lawnmower (100) to movably operate within the work area (205) in a second operating mode. In the second operating mode, the controller receives scanning information from said landmark scanner (193) and identifies at least one landmark based on the received scanning information and determines a landmark-based position estimate. The controller defines a search space using the landmark-based position estimate, and the satellite navigation device (190) is reconstructed based on the defined search space. Once the satellite navigation device (190) has been reconstructed, the controller causes the robotic lawnmower (100) to again operate in the first operating mode.

    Navigation for a robotic working tool

    公开(公告)号:US10646997B2

    公开(公告)日:2020-05-12

    申请号:US15407576

    申请日:2017-01-17

    Applicant: HUSQVARNA AB

    Abstract: A robotic work tool system, comprising a robotic work tool, said robotic work tool comprising a controller being configured to cause said robotic work tool to operate in a first operating mode, which first operating mode is based on a current position, said current position being determined based on signals received from a position determining device, such as Global Navigation Satellite System device; determine that said received signals are not reliable, and in response thereto cause said robotic work tool to operate according to second operating mode, which second operating mode is not based on a current position being determined based on said received signals.

    Navigation for a robotic work tool
    17.
    发明授权

    公开(公告)号:US10598793B2

    公开(公告)日:2020-03-24

    申请号:US15539356

    申请日:2015-11-26

    Applicant: HUSQVARNA AB

    Abstract: A robotic work tool system, comprising a robotic work tool, said robotic work tool comprising a position determining device for determining a current position and at least one deduced reckoning (also known as dead reckoning) navigation sensor, the robotic work tool being configured to determine that a reliable and accurate current position is possible to determine and in response thereto determine an expected navigation parameter, compare the expected navigation parameter to a current navigation parameter to determine a navigation error, determine if the navigation error is negligible, and if the navigation error is not negligible, cause the robotic work tool to change its trajectory to accommodate for the navigation error. Wherein the robotic work tool (100) is further configured to change the trajectory by aligning the trajectory with an expected trajectory, wherein the expected trajectory is determined as an expected direction originating from an expected position and wherein the robotic work tool (100) is configured to change the trajectory by returning to a position that should have been visited and aligning the trajectory with the expected direction originating from the expected position, said position that should have been visited being aligned with the expected direction originating from the expected position.

    IMPROVED NAVIGATION FOR A ROBOTIC WORK TOOL
    19.
    发明申请

    公开(公告)号:US20170357006A1

    公开(公告)日:2017-12-14

    申请号:US15539356

    申请日:2015-11-26

    Applicant: HUSQVARNA AB

    Abstract: A robotic work tool system, comprising a robotic work tool, said robotic work tool comprising a position determining device for determining a current position and at least one deduced reckoning (also known as dead reckoning) navigation sensor, the robotic work tool being configured to determine that a reliable and accurate current position is possible to determine and in response thereto determine an expected navigation parameter, compare the expected navigation parameter to a current navigation parameter to determine a navigation error, determine if the navigation error is negligible, and if the navigation error is not negligible, cause the robotic work tool to change its trajectory to accommodate for the navigation error. Wherein the robotic work tool (100) is further configured to change the trajectory by aligning the trajectory with an expected trajectory, wherein the expected trajectory is determined as an expected direction originating from an expected position and wherein the robotic work tool (100) is configured to change the trajectory by returning to a position that should have been visited and aligning the trajectory with the expected direction originating from the expected position, said position that should have been visited being aligned with the expected direction originating from the expected position.

Patent Agency Ranking