Abstract:
This invention relates to an active vibration isolation installation based on electromagnetic and aerostatic floatation which is essential for the super-precision measurement and manufacture. It mainly consists of an isolation platform, an intermediate sleeve and a base. The isolation platform supports any object(s) placed on the platform and is supported by the intermediate sleeve. And the intermediate sleeve is supported on the base which is fixed on the ground. This invention uses the combination electromagnetic and aerostatic floatation to achieve large bearing capacity while excellent vibration isolation performance is maintained. This invention realizes automatic control of stiffness, using closed-loop speed control methods. It is therefore conclude that this invention can impose an excellent inhibitory action on the vibration originating from surroundings and the platform itself.
Abstract:
A method, system, device, and medium for online stress monitoring without baseline data based on single-mode multi-frequency signal fusion are provided. The method includes: establishing a dispersion curve according to geometric dimensions and material parameters of a measured object; then solving an approximate linear relationship between propagation time of S0 modes with different frequencies and stress at a fixed propagation distance by using a relationship between stress and group velocity, the obtained linear relationship being an acousto-elastic equation required for final measurement; then performing Hilbert transformation on an obtained signal, extracting a signal envelope, and determining arrival time of two excitation frequency signals by means of a peak extraction algorithm and a time domain width of an excitation signal; and calculating a propagation time ratio and substituting the propagation time ratio into a pre-calibrated acousto-elastic equation to solve a stress value of an object to be measured. The disclosure is advantageous in that the multi-frequency data is fused by using dispersion characteristics of a single-mode Lamb wave and an acousto-elastic effect, thereby achieving online stress monitoring without baseline data.
Abstract:
Provided is a large high-speed rotary equipment gap stacking assembly apparatus and assembly method based on digital twin, and relates to the technical field of engine assembly measurement. The disclosure solves the problem of unbalanced rotation of the rotary parts caused by large assembly error during multi-stage rotary parts are stacked in a gap way. The disclosure includes the assembly apparatus entity and the assembly method; the assembly apparatus entity is configured to establish data communication with the upper computer through data acquisition apparatus, and upper computer is configured to establish a virtual assembly model; the virtual assembly model and optimal coaxiality of the multi-stage rotary parts in gap stacking can be obtained according to the assembly method, and the assembly process can be controlled by using the virtual assembly model and the optimal coaxiality. The disclosure is suitable for controlling the assembly process of the rotary parts.
Abstract:
The present disclosure proposes a non-baseline on-line stress monitoring system and monitoring method based on multi-mode Lamb wave data fusion. A Lamb wave dispersion curve is established according to geometric dimensions and material parameters of a measured object, a cut-off frequency of a first-order Lamb wave mode is obtained, an excitation frequency of a Lamb wave signal is determined, and then pure Lamb waves in S0 and A0 modes obtained inside the measured object are obtained; an acoustoelastic equation is established, an elastodynamic equation of the measured object under a prestress condition is solved, and linear relationships between a group velocity and a stress of the Lamb waves in the S0 and A0 modes under the excitation frequency are obtained; data is processed through the on-line monitoring system; a stress gradient in a depth direction is calculated, and finally, a stress state of the measured object is represented. The present disclosure does not require data under a zero stress state as baseline data, does not require designing a wedge block capable of generating a critical refraction longitudinal wave, and combines acoustoelastic effects of Lamb waves in different modes to realize online stress monitoring without the baseline data.
Abstract:
The present disclosure provides a multi-frequency hybrid heterodyne laser tracker system based on a single light source. According to the laser tracking system proposed in the present disclosure, multi-frequency laser is obtained by conducting multi-acousto-optic frequency shift on a dual-longitudinal-mode laser unit, and an absolute ranging precision gauge is constructed by using a dual-longitudinal-mode interval of a light source. With the frequency shift difference of a multi-acousto-optic frequency shifter, an absolute ranging roughness gauge is constructed, and the relative displacement measurement of dual-frequency light interference is achieved. Meanwhile, by utilizing the reflection of multiple reflectors and light splitting and combining of polarization prisms, synchronous measurement of multi-wavelength absolute distance, relative displacement and PSD position is achieved, resolving the problem that an existing laser tracker uses multiple light sources, which leads to difference in measurement datum, and consequently to the difficultly in traceback.
Abstract:
The disclosure discloses an air-coupled ultrasonic detection method and device based on a defect probability reconstruction algorithm. The method includes the following steps: determining the excitation frequency of a transmitting air-coupled transducer according to a frequency dispersion curve of guided waves and the thickness of a to-be-detected piece; determining the group velocity of an antisymmetric mode according to the excitation frequency, and determining the inclination angle of the transmitting/receiving air-coupled transducer according to the Snell law; obtaining an initial waveform of a defect-free test piece as reference data by adopting a same-side penetration method, then rotating the transmitting/receiving transducer by 360 degrees by taking the Z direction as an axis at preset angle intervals by adopting a rotary scanning method, collecting N groups of signal data of the to-be-detected piece again, comparing the N groups of signal data with the reference data to determine whether the signal characteristics have great changes or not, calculating the defect distribution probability on the to-be-detected piece, and carrying out defect imaging on a rotating coverage area of the transmitting/receiving air-coupled transducer according to the defect distribution probability. According to the method, the precision of traditional air-coupled ultrasonic X and Y scanning detection is improved, and compared with a complex imaging technology, the air-coupled ultrasonic detection method consumes less time.
Abstract:
A dynamic-magnetic steel magnetic levitation double-workpiece-stage vector arc switching method and apparatus based on wireless energy transmission, falling within the semiconductor manufacturing equipment technology. The apparatus comprises a support frame (1), a balance mass block (2), magnetic levitation workpiece stages (4a, 4b), a workpiece stage measurement apparatus, wireless energy transmission apparatuses (5a, 5b) and a wireless energy receiving apparatus (406), wherein the two workpiece stages work between a measurement site (11) and an exposure site (12); a laser interferometer (6) is used to measure the positions of the workpiece stages; the wireless energy transmission apparatuses (5a, 5b) are used to provide energy for a sensor (407) in a micro-drive stage; the workpiece stages are driven using a magnetic levitation planar electrical motor; and during a double-workpiece-stage switching process, the planar electrical motor is used to drive the two workpiece stages so as to achieve single-beat arc quick switching. By using the method and apparatus, the problem that an existing stage switching scheme has many beats, a long track, many start-stop links and a long time for stabilization is solved, thereby reducing the stage switching links, shortening the stage switching time, and improving the productivity of a lithography machine.
Abstract:
A method and equipment for dimensional measurement of a micro part based on fiber laser with multi-core fiber Bragg grating probe are provided, wherein a multi-core FBG probe with FBGs (12,29) inscribed in the core or cores out of the center of the multi-core fiber is used to transform the two-dimensional or three-dimensional contact displacement into the spectrum shifts with a high sensitivity. At the meantime, the FBGs in the multi-core FBG probe (12,29) work as the wavelength selection device of the fiber laser, the wavelength of the fiber laser will change thereby. So the contact displacement is finally converted into the wavelength change of the fiber laser. The method and equipment have the advantage of high sensitivity, low probing force, compact structure, high inspecting aspect ratio and immunity to environment interference.
Abstract:
An aero engine rotor air floatation assembling method and device based on a gantry structure belong to mechanical assembling technology. The present invention can effectively solve the problem of poor coaxality after the aero engine rotor is assembled and has the characteristics of high coaxality after the rotor is assembled, reduced vibration, mounting easiness, high flexibility and improved engine performance. The measuring method and device are: determining rotary reference based on a rotary air bearing; determining the angular positioning of a rotary table according to a grating ruler; extracting the radial error of the radial mounting plane and the inclination error of the axial mounting plane of the rotor based on the four-probe measuring device to obtain the influencing weight of this rotor to the assembled rotor on coaxality; measuring respectively all the rotors required for assembling to obtain the influencing weight of each rotor to the assembled rotor on coaxality; vector optimizing the weight of each rotor to obtain the assembling angle of each rotor.
Abstract:
A magnetically suspended vibration isolator with zero stiffness whose angle degree of freedom is decoupled with a joint ball bearing has a main body, in which a sleeve and a lower mounting plate are supported with a magnetically suspended thrust bearing, a piston cylinder and the sleeve are lubricated and supported with a cylinder air bearing surface, and the angle degree of freedom between a upper mounting plate and the lower mounting plate is decoupled with a joint ball bearing; a position close-loop control system comprising voice coil motors, displacement sensors, limit switches, a controller and a driver is introduced, and the relative position between the upper mounting plate and the lower mounting plate is precisely controlled.