Abstract:
A MEMS assembly includes a housing having an internal volume V, wherein the housing has a sound opening to the internal volume V, a MEMS component in the housing adjacent to the sound opening, and a layer element arranged at least regionally at a surface region of the housing that faces the internal volume V, wherein the layer element includes a layer material having a lower thermal conductivity and a higher heat capacity than the housing material of the housing that adjoins the layer element.
Abstract:
In accordance with an embodiment, a MEMS sensor includes a MEMS arrangement having a movable electrode and a stator electrode arranged opposite the movable electrode. The MEMS sensor includes a first bias voltage source, which is connected to the stator electrode and which is configured to apply a first bias voltage to the stator electrode. The MEMS sensor further includes a common-mode read-out circuit connected to the stator electrode by a capacitive coupling and comprising a second bias voltage source, which is configured to apply a second bias voltage to a side of the capacitive coupling that faces away from the stator electrode.
Abstract:
In accordance with one exemplary embodiment, a production method for a double-membrane MEMS component comprises the following steps: providing a layer arrangement on a carrier substrate, wherein the layer arrangement has a first and second membrane structure spaced apart from one another and a counterelectrode structure arranged therebetween, wherein a sacrificial material is arranged in an intermediate region between the counterelectrode structure and the first and second membrane structures respectively spaced apart therefrom, and wherein the first membrane structure has an opening structure to the intermediate region with the sacrificial material and partly removing the sacrificial material from the intermediate region in order to obtain a mechanical connection structure comprising the sacrificial material between the first and second membrane structures, which mechanical connection structure is mechanically coupled between the first and second membrane structures and is mechanically decoupled from the counterelectrode structure.
Abstract:
For manufacturing a sound transducer structure, membrane support material is applied on a first main surface of a membrane carrier material and membrane material is applied in a sound transducing region and an edge region on a surface of the membrane support material. In addition, counter electrode support material is applied on a surface of the membrane material and recesses are formed in the sound transducing region of the membrane material. Counter electrode material is applied to the counter electrode support material and membrane carrier material and membrane support material are removed in the sound transducing region to the membrane material.
Abstract:
A capacitive microphone may include a housing, a membrane, and a first backplate, wherein a first insulating layer may be disposed on a first side of the first backplate facing the membrane and a second insulating layer may be disposed on a second side of the first backplate opposite to the first side of the first backplate. A further insulating layer may be disposed on a side wall of at least one of a plurality of perforation holes in the first backplate. Each conductive surface of the first backplate may be covered with insulating material.
Abstract:
A micro-electro-mechanical system (MEMS) device includes a first plate, a second plate disposed over the first plate, and a first moveable plate disposed between the first plate and the second plate. The MEMS device further includes a second moveable plate disposed between the first moveable plate and the second plate.
Abstract:
In accordance with an embodiment of the present invention, a micro-electro-mechanical system (MEMS) device includes a first plate, a second plate disposed over the first plate, and a first moveable plate disposed between the first plate and the second plate. The MEMS device further includes a second moveable plate disposed between the first moveable plate and the second plate.
Abstract:
A sensor module and semiconductor chip. One embodiment provides a carrier. A semiconductor chip includes a first recess and a second recess and a main surface of the semiconductor chip. The semiconductor chip is mounted to the carrier such that the first recess forms a first cavity with the carrier and the second recess forms a second cavity with the carrier. The first cavity is in fluid connection with the second cavity.
Abstract:
A system includes a first membrane, a second membrane and a third membrane spaced apart from one another, wherein the second membrane is between the first membrane and the third membrane, and the second membrane comprises a plurality of openings, a sealed low pressure chamber between the first membrane and the third membrane, and a plurality of electrodes in the sealed low pressure chamber.
Abstract:
A microfabricated structure includes a perforated stator; a first isolation layer on a first surface of the perforated stator; a second isolation layer on a second surface of the perforated stator; a first membrane on the first isolation layer; a second membrane on the second isolation layer; and a pillar coupled between the first membrane and the second membrane, wherein the first isolation layer includes a first tapered edge portion having a common surface with the first membrane, wherein the second isolation layer includes a first tapered edge portion having a common surface with the second membrane, and wherein an endpoint of the first tapered edge portion of the first isolation layer is laterally offset with respect to an endpoint of the first tapered edge portion of the second isolation layer.