Abstract:
The present disclosure relates to the fabrication of spin transfer torque memory devices, wherein a magnetic tunnel junction of the spin transfer torque memory device is formed with Heusler alloys as the fixed and free magnetic layers and a tunnel barrier layer disposed between and abutting the fixed Heusler magnetic layer and the free Heusler magnetic layer, wherein the tunnel barrier layer is lattice matched to the free Heusler magnetic layer. In one embodiment, the tunnel barrier layer may be a strontium titanate layer.
Abstract:
A system comprises an article comprising one or more fabric layers, a plurality of electronic devices, each being incorporated into or onto one of the one or more fabric layers, and one or more communication links between two or more of the plurality of electronic devices. Each of the plurality of electronic devices can comprise a flexible substrate coupled to the fabric layer, one or more metallization layers deposited on the flexible substrate, and one or more electronic components electrically coupled to the one or more metallization layers.
Abstract:
A backend electrostatic discharge (ESD) diode device structure is presented comprising: a first structure comprising a first material, wherein the first material includes metal; a second structure adjacent to the first structure, wherein the second structure comprises a second material, wherein the second material includes a semiconductor or an oxide; and a third structure adjacent to the second structure, wherein the third structure comprises the first material, wherein the second structure is between the first and third structures.
Abstract:
Multiple-ferroelectric capacitor structures in memory devices, including in integrated circuit devices, and techniques for forming the structures. Insulators separating individual outer plates in a ferroelectric capacitor array are supported between wider portions of a shared, inner plate. Wider portions of an inner plate may be formed in lateral recesses between insulating layers. Ferroelectric material may be deposited over the inner plate between insulating layers after removing sacrificial layers. An etch-stop layer may protect the inner plate when sacrificial layers are removed. An etch-stop or interface layer may remain over the inner plate adjacent insulators.
Abstract:
A memory cell is disclosed. The memory cell includes a word line contact, a cylindrical electrode having a top region and a bottom region, and RRAM material covering the surface of the cylindrical electrode from the top region to the bottom region. A select transistor contact is coupled to the bottom region of the cylindrical electrode.
Abstract:
A MTJ device includes a free (storage) magnet and fixed (reference) magnet between first and second electrodes, and a programmable booster between the free magnet and one of the electrodes. The booster has a magnetic material layer. The booster may further have an interface layer that supports the formation of a skyrmion spin texture, or a stable ferromagnetic domain, within the magnetic material layer. A programming current between two circuit nodes may be employed to set a position of the skyrmion or magnetic domain within the magnetic material layer to be more proximal to, or more distal from, the free magnet. The position of the skyrmion or magnetic domain to the MTJ may modulate TMR ratio of the MTJ device. The TMR ratio modulation may be employed to discern more than two states of the MTJ device. Such a multi-level device may, for example, be employed to store 2 bits/cell.
Abstract:
A system comprises an article comprising one or more fabric layers, a. plurality of electronic devices, each being incorporated into or onto one of the one or more fabric layers, and one or more communication links between two or more of the plurality of electronic devices. Each of the plurality of electronic devices can comprise a flexible substrate coupled to the fabric layer, one or more metallization layers deposited on the flexible substrate, and one or more electronic components electrically coupled to the one or more metallization layers.
Abstract:
Magnetic tunnel junctions (MTJ) suitable for spin transfer torque memory (STTM) devices, include perpendicular magnetic layers and one or more anisotropy enhancing layer(s) separated from a free magnetic layer by a crystallization barrier layer. In embodiments, an anisotropy enhancing layer improves perpendicular orientation of the free magnetic layer while the crystallization barrier improves tunnel magnetoresistance (TMR) ratio with better alignment of crystalline texture of the free magnetic layer with that of a tunneling layer.
Abstract:
Some embodiments include apparatuses and methods having a memory element included in a non-volatile memory cell, a transistor, an access line coupled to a gate to the transistor, a first conductive line, and a second conductive line. The memory element can include a conductive oxide material located over a substrate and between the first and second conductive lines. The memory element includes a portion coupled to a drain of the transistor and another portion coupled to the second conductive line. The first conductive line is coupled to a source of the transistor and can be located between the access line and the memory element. The access line has a length extending in a first direction and can be located between the substrate and the memory element. The first and second conductive lines have lengths extending in a second direction.
Abstract:
Embodiments of an apparatus and methods for improving multi-gate device performance are generally described herein. Other embodiments may be described and claimed.