Abstract:
A MEMS device and method for providing a MEMS device are disclosed. In a first aspect, the MEMS device comprises a first substrate and a second substrate coupled to the first substrate forming a sealed enclosure. A moveable structure is located within the sealed enclosure. An outgassing layer is formed on the first or second substrates and within the sealed enclosure. A first conductive layer is disposed between the moveable structure and the outgassing layer, wherein the first conductive layer allows outgassing species to pass therethrough.
Abstract:
A system and method for providing a MEMS sensor are disclosed. In a first aspect, the system is a MEMS sensor that comprises a substrate, an anchor region coupled to the substrate, at least one support arm coupled to the anchor region, at least two guiding arms coupled to and moving relative to the at least one support arm, a plurality of sensing elements disposed on the at least two guiding arms to measure motion of the at least two guiding arms relative to the substrate, and a proof mass system comprising at least one mass coupled to each of the at least two guiding arms by a set of springs. The proof mass system is disposed outside the anchor region, the at least one support arm, the at least two guiding arms, the set of springs, and the plurality of sensing elements.
Abstract:
An angular velocity sensor including a drive extension mode. In one aspect, an angular rate sensor includes a base and at least three masses disposed substantially in a plane parallel to the base, the masses having a center of mass. At least one actuator drives the masses in an extension mode, such that in the extension mode the masses move in the plane simultaneously away or simultaneously towards the center of mass. At least one transducer senses at least one Coriolis force resulting from motion of the masses and angular velocity about at least one input axis of the sensor. Additional embodiments can include a linkage that constrains the masses to move in the extension mode.
Abstract:
In a first aspect, the angular rate sensor comprises a substrate and a rotating structure anchored to the substrate. The angular rate sensor also includes a drive mass anchored to the substrate and an element coupling the drive mass and the rotating structure. The angular rate sensor further includes an actuator for driving the drive mass into oscillation along a first axis in plane to the substrate and for driving the rotating structure into rotational oscillation around a second axis normal to the substrate; a first transducer to sense the motion of the rotating structure in response to a Coriolis force in a sense mode; and a second transducer to sense the motion of the sensor during a drive mode. In a second aspect the angular rate sensor comprises a substrate and two shear masses which are parallel to the substrate and anchored to the substrate via flexible elements.
Abstract:
An angular velocity sensor including a drive extension mode. In one aspect, an angular rate sensor includes a base and at least three masses disposed substantially in a plane parallel to the base, the masses having a center of mass. At least one actuator drives the masses in an extension mode, such that in the extension mode the masses move in the plane simultaneously away or simultaneously towards the center of mass. At least one transducer senses at least one Coriolis force resulting from motion of the masses and angular velocity about at least one input axis of the sensor. Additional embodiments can include a linkage that constrains the masses to move in the extension mode.
Abstract:
A method includes depositing a silicon layer over a first oxide layer that overlays a first silicon substrate. The method further includes depositing a second oxide layer over the silicon layer to form a composite substrate. The composite substrate is bonded to a second silicon substrate to form a micro-electro-mechanical system (MEMS) substrate. Holes within the second silicon substrate are formed by reaching the second oxide layer of the composite substrate. The method further includes removing a portion of the second oxide layer through the holes to release MEMS features. The MEMS substrate may be bonded to a CMOS substrate.
Abstract:
Semiconductor manufacturing processes include providing a first substrate having a first passivation layer disposed above a patterned top-level metal layer, and further having a second passivation layer disposed over the first passivation layer; the second passivation layer has a top surface. The processes further include forming an opening in a first portion of the second passivation layer, and the opening exposes a portion of a surface of the first passivation layer. The processes further include patterning the second and first passivation layers to expose portions of the patterned top-level metal layer and bonding a second substrate and the first substrate to each other. The bonding occurs within a temperature range in which at least the exposed portion of the first passivation layer undergoes outgassing.
Abstract:
A system and method in accordance with an embodiment reduces the cross-axis sensitivity of a gyroscope. This is achieved by building a gyroscope using a mechanical transducer that comprises a spring system that is less sensitive to fabrication imperfection and optimized to minimize the response to the rotations other than the intended input rotation axis. The longitudinal axes of the first and second flexible elements are parallel to each other and parallel to the first direction
Abstract:
A gyroscope is disclosed. The gyroscope comprises a substrate; and a guided mass system. The guided mass system comprises proof-mass and guiding arm. The proof-mass and the guiding arm are disposed in a plane parallel to the substrate. The proof-mass is coupled to the guiding arm. The guiding arm is also coupled to the substrate through a spring. The guiding arm allows motion of the proof-mass to a first direction in the plane. The guiding arm and the proof-mass rotate about a first sense axis. The first sense axis is in the plane and parallel to the first direction. The gyroscope includes an actuator for vibrating the proof-mass in the first direction. The gyroscope also includes a transducer for sensing motion of the proof-mass-normal to the plane in response to angular velocity about a first input axis that is in the plane and orthogonal to the first direction.
Abstract:
A method of fabricating electrical connections in an integrated MEMS device is disclosed. The method comprises forming a MEMS wafer. Forming a MEMS wafer includes forming one cavity in a first semiconductor layer, bonding the first semiconductor layer to a second semiconductor layer with a dielectric layer disposed between the first semiconductor layer and the second semiconductor layer, and etching at least one via through the second semiconductor layer and the dielectric layer and depositing a conductive material on the second semiconductor layer and filling the at least one via. Forming a MEMS wafer also includes patterning and etching the conductive material to form one standoff and depositing a germanium layer on the conductive material, patterning and etching the germanium layer, and patterning and etching the second semiconductor layer to define one MEMS structure. The method also includes bonding the MEMS wafer to a base substrate.