Abstract:
A method includes receiving a signal from a sensor. The signal includes a first in-phase component and a first quadrature component. The first in-phase and quadrature components are identified. A rate signal is applied to the sensor and the sensor generates a sensed rate signal. A second in-phase and quadrature components associated with the sensed rate signal are determined. A phase error based on the first and the second in-phase components, and the first and the second quadrature components is determined. The method may further include reducing error in measurements associated with the sensor by dynamically compensating for the determined phase error, e.g., by modifying a clock signal, by changing a demodulation phase of a demodulator used to identify the in-phase and the quadrature components.
Abstract:
A device for reducing package stress sensitivity of a sensor includes one or more anchor points for attaching to a substrate; a rigid frame structure configured to at least partially support the sensor; and a compliant element between each anchor point and the rigid frame structure. Also disclosed is a device for supporting a micro-electro-mechanical (MEMS) sensor comprising four anchor points for attaching to a substrate; a rigid frame structure configured to support the MEMS sensor; and a crab-leg suspension element between each anchor point and the rigid frame structure, wherein the crab-leg suspension element is compliant. A method for reducing package stress sensitivity of a sensor is provided as well.
Abstract:
A system and method in accordance with an embodiment reduces the cross-axis sensitivity of a gyroscope. This is achieved by building a gyroscope using a mechanical transducer that comprises a spring system that is less sensitive to fabrication imperfection and optimized to minimize the response to the rotations other than the intended input rotation axis. The longitudinal axes of the first and second flexible elements are parallel to each other and parallel to the first direction
Abstract:
Embodiments for modifying a spring mass configuration are disclosed that minimize the effects of unwanted nonlinear motion on a MEMS sensor. The modifications include any or any combination of providing a rigid element between rotating structures of the spring mass configuration, tuning a spring system between the rotating structures and coupling an electrical cancellation system to the rotating structures. In so doing unwanted nonlinear motion such as unwanted 2nd harmonic motion is minimized
Abstract:
A MEMS sensor is disclosed. The MEMS sensor includes a MEMS structure and a substrate coupled to the MEMS structure. The substrate includes a layer of metal and a layer of dielectric material. The MEMS structure moves in response to an excitation. A first over-travel stop is formed on the substrate at a first distance from the MEMS structure. A second over-travel stop on the substrate at a second distance from the MEMS structure. At least one electrode on the substrate at a third distance from the MEMS structure. The first, second and third distances are all different.
Abstract:
A method of fabricating electrical connections in an integrated MEMS device is disclosed. The method comprises forming a MEMS wafer. Forming a MEMS wafer includes forming one cavity in a first semiconductor layer, bonding the first semiconductor layer to a second semiconductor layer with a dielectric layer disposed between the first semiconductor layer and the second semiconductor layer, and etching at least one via through the second semiconductor layer and the dielectric layer and depositing a conductive material on the second semiconductor layer and filling the at least one via. Forming a MEMS wafer also includes patterning and etching the conductive material to form one standoff and depositing a germanium layer on the conductive material, patterning and etching the germanium layer, and patterning and etching the second semiconductor layer to define one MEMS structure. The method also includes bonding the MEMS wafer to a base substrate.
Abstract:
A method of fabricating electrical connections in an integrated MEMS device is disclosed. The method comprises forming a MEMS wafer. Forming a MEMS wafer includes forming one cavity in a first semiconductor layer, bonding the first semiconductor layer to a second semiconductor layer with a dielectric layer disposed between the first semiconductor layer and the second semiconductor layer, and etching at least one via through the second semiconductor layer and the dielectric layer and depositing a conductive material on the second semiconductor layer and filling the at least one via. Forming a MEMS wafer also includes patterning and etching the conductive material to form one standoff and depositing a germanium layer on the conductive material, patterning and etching the germanium layer, and patterning and etching the second semiconductor layer to define one MEMS structure. The method also includes bonding the MEMS wafer to a base substrate.
Abstract:
A rotational sensor for measuring rotational acceleration is disclosed. The rotational sensor comprises a sense substrate; at least two proof masses, and a set of two transducers. Each of the at least two proof masses is anchored to the sense substrate via at least one flexure and electrically isolated from each other; and the at least two proof masses are capable of rotating in-plane about a Z-axis relative to the sense substrate, wherein the Z-axis is normal to the substrate. Each of the transducers can sense rotation of each proof mass with respect to the sense substrate in response to a rotation of the rotational sensor.
Abstract:
Embodiments for modifying a spring mass configuration are disclosed that minimize the effects of unwanted nonlinear motion on a MEMS sensor. The modifications include any or any combination of providing a rigid element between rotating structures of the spring mass configuration, tuning a spring system between the rotating structures and coupling an electrical cancellation system to the rotating structures. In so doing unwanted nonlinear motion such as unwanted 2nd harmonic motion is minimized.
Abstract:
Embodiments for modifying a spring mass configuration are disclosed that minimize the effects of unwanted nonlinear motion on a MEMS sensor. The modifications include any or any combination of providing a rigid element between rotating structures of the spring mass configuration, tuning a spring system between the rotating structures and coupling an electrical cancellation system to the rotating structures. In so doing unwanted nonlinear motion such as unwanted 2nd harmonic motion is minimized.