Abstract:
A reflective optics system that preferably requires the presence of both convex and a concave mirrors that have beam reflecting surfaces, the application of which achieves focusing of a beam of electromagnetic radiation onto a sample, (which can be along a locus differing from that of an input beam), with minimized effects on a polarization state of an input beam state of polarization based on adjusted angles of incidence and reflections from the various mirrors involved.
Abstract:
An ellipsometer, polarimeter and the like system operating in the infrared spectral range (0.75 μm to 1000 μm), utilizing a tunable quantum cascade laser (QCL) source in combination with dithering capability to reduce speckle and standing wave effects, dual-rotating optical elements, a single-point detector, as well as optional means of reducing the size of the probe beam at the measurement surface and optional chopper for lock-in detection.
Abstract:
In ellipsometer and polarimeter systems, reflective optics including both convex and a concave mirrors that have beam reflecting surfaces, as well as aperture control of beam size to optimize operation with respect to aberration and diffraction effects while achieve the focusing of a beam of electromagnetic radiation with minimized effects on a polarization state of an input beam state of polarization that results from adjustment of angles of incidence and reflections from the various mirrors involved, and further including detectors of electromagnetic radiation that enable optimization of the operation thereof for application over various specific wavelength ranges, involving functional combinations of gratings and/or combination dichroic beam splitter-prisms, which themselves can be optimized as regards wavelength dispersion characteristics.
Abstract:
An ellipsometer system with polarization state generator and polarization state analyzer components inside at least one internal environment supporting encasement, said at least one encasement being present inside said environmental chamber.
Abstract:
A system for and method of investigating changes in optical properties of a porous effective substrate surface related to, for instance, effective surface depth and refractive index, pore size, pore volume and pore size distribution at atmospheric pressure.
Abstract:
A combination of a focusing element, and a filtering element which naturally adjusts the cross-sectional area of a beam of electromagnetic radiation passed through the focusing element as a function of wavelength, optionally as an element of an ellipsometer or polarimeter system.
Abstract:
An ellipsometer, polarimeter and the like system operating in the infrared spectral range (0.75 μm to 1000 μm), utilizing a tunable quantum cascade laser (QCL) source with the capability if reducing speckle and standing wave effects, dual-rotatable optical elements, a single-point detector, as well as optional means of reducing the size of the probe beam at the measurement surface and optional chopper for lock-in detection.
Abstract:
An ellipsometer, polarimeter and the like system operating in the infrared spectral range (0.75 um to 1000 µm), utilizing a tunable quantum cascade laser (QCL) source with the capability if reducing speckle and standing wave effects, dual-rotatable optical elements, a single-point detector, as well as optional means of reducing the size of the probe beam at the measurement surface and optional chopper for lock-in detection.
Abstract:
Reflectometer, spectrophotometer, ellipsometer, and polarimeter systems having a supercontinuum laser source of coherent electromagnetic radiation over a range of about 400-about 2500 nm, a stage for supporting a sample and a detector of electromagnetic radiation, wherein the supercontinuum source provides a coherent beam of electromagnetic radiation which interacts with a sample, and the detector system comprises functional combinations of gratings and/or combination dichroic beam splitter-prisms, which themselves can be optimized as regards wavelength dispersion characteristics, directs wavelengths in various ranges to various detectors that are well suited to detect them.
Abstract:
A reflective optics system that requires the presence of both convex and a concave mirrors that have beam reflecting surfaces. Application thereof achieves focusing of a beam of electromagnetic radiation with minimized effects on a polarization state of an input beam state of polarization that results from adjustment of angles of incidence and reflections from the various mirrors involved. This invention is also a combination of a focusing element and a filtering element that provides an optimum electromagnetic beam cross-sectional area based on optimizing the beam cross-sectional area in view of conflicting effects of aberration and diffraction inherent in said focusing element, which, for each wavelength, vary oppositely to one another with electromagnetic beam cross-sectional area.