Abstract:
A method and apparatus for transmitting data in code division multiple access communications. The method includes processing spread first data with a channel response matrix using an equalization circuit to pre-equalize the spread data to compensate for a channel response prior to transmission. The pre-equalized data is received and recovered by a receiver. Second data, transmitted from the receiver, is received and recovered using the equalization circuit to equalize the second data to compensate for a channel response that the first data encountered.
Abstract:
Data is estimated of a plurality of received spread spectrum signals by a wireless communication apparatus. The plurality of received communications are received in a shared spectrum. The received communications are sampled to produce a received vector of sequential samples. The received vector is processed to produce a plurality of segments. Each segment is processed separately to estimate data of the received communications.
Abstract:
A wireless communication method and apparatus for detecting and decoding enhanced dedicated channel (E-DCH) hybrid automatic repeat request (H-ARQ) indicator channel (E-HICH) transmissions are disclosed. A wireless transmit/receive unit (WTRU) receives E-HICH transmissions and detects an H-ARQ indicator transmitted via the E-HICH by performing a binary hypothesis test. The WTRU then generates an acknowledgement (ACK) message or a non-acknowledgement (NACK) message based on the detected H-ARQ indicator. A reliability test may be further performed to improve performance, whereby the binary hypothesis test may be performed only if the reliability test is passed.
Abstract:
A method and apparatus for estimating channelization codes in a wireless transmit/receive unit (WTRU) using blind code detection (BCD). A WTRU receives communication bursts and detects a midamble in the received burst. A candidate code list is generated in accordance with the detected midamble. The candidate code list includes channelization codes intended for both the intended WTRU and other WTRUs. Active channelization codes among the codes in the candidate list are identified, and the identified codes are forwarded to a multi-user detector (MUD). Since the orthogonal variable spreading factor code maintains the orthogonality between codes of different SF, SFs of other WTRUs follow the SF of the intended WTRU. Moreover, since the data for other WTRUs is not used in symbol processing after MUD, the performance of MUD for the intended WTRU is preserved with the SF ambiguity of other WTRUs.
Abstract:
An adaptive equalizer including an equalizer filter and a tap coefficients generator used to process a sample data stream derived from a plurality of received signals is disclosed. The tap coefficients generator includes an equalizer tap update unit, a vector norm square estimator, an active taps mask generator, a switch and a pilot amplitude reference unit used to minimize the dynamic range of the equalizer filter. A dynamic mask vector is used to mask active taps generated by the equalizer tap update unit when an unmasked signal output by the equalizer filter is selected by the switch to generate an error signal fed to the equalizer tap update unit. A fixed mask vector is used to mask active taps generated by the equalizer tap update unit when a masked signal output by the equalizer filter is used to generate the error signal.
Abstract:
A plurality of data signals are received over an antenna array having a plurality of antenna elements. The data signals are transmitted over a shared spectrum in a wireless communication system. A signal having each of the data signals is received over each antenna element. The plurality of data signals are grouped into a plurality of groups. The received signals of the antenna elements are matched filtered for a first group of the plurality of groups, producing a matched filtered result. Data is jointly detected of the first group using the matched filtered result. An interference correction signal is constructed using the detected data for each antenna element. The interference cancelled result is subtracted from the received signal of each antenna element, producing an interference cancelled result for each antenna element. Data is successively detected for remaining groups using the interference cancelled result for each antenna element.
Abstract:
A transmitter site transmits a plurality of data signals over a shared spectrum in a code division multiple access communication system. Each transmitted data signal experiences a similar channel response. A combined signal of the transmitted data signals is received. The combined signal is sampled at a multiple of the chip rate. The channel response for the combined signal is determined. A first element of a spread data vector is determined using the combined signal samples and the estimated channel response. Using a factor from the first element determination, remaining elements of the spread data vector are determined. The data of the data signals is determined using the determined elements of the spread data vector.
Abstract:
A method for performing cell search in an orthogonal frequency division multiple access (OFDMA) based cellular communication network in which a primary synchronization channel (P-SCH), and optionally a secondary synchronization channel (S-SCH), carries cell search information. A downlink signal is received containing P-SCH symbols. The P-SCH symbols are processed to obtain an initial detection of frame timing, orthogonal frequency division multiplexing (OFDM) symbol timing, a cell identifier (ID), a frequency offset, and a cell transmission bandwidth. Optionally, an OFDM symbol timing self-check and error correction is then performed.
Abstract:
A block linear equalizer (BLE) using an approximate Cholesky decomposition is disclosed. The BLE includes channel estimators, a channel monitor unit, a noise power estimator, a parameter selection unit and an approximate Cholesky processor. The channel estimator generates a channel estimate vector from received samples. The channel monitor unit generates a first channel monitor signal for a truncated channel estimate vector and a second channel monitor signal. The noise power estimator estimates a noise power of the received samples. The parameter selection unit selects parameters for approximate Cholesky decomposition based on the first and second channel monitor signals. The approximate Cholesky processor performs block linear equalization on the received samples based on approximate Cholesky decomposition.
Abstract:
A method and apparatus for accessing a contention-based uplink random access channel (RACH) in a single carrier frequency division multiple access (SC-FDMA) system are disclosed. A wireless transmit/receive unit (WTRU) randomly selects a RACH subchannel and a signature among a plurality of available RACH subchannels and signatures. The WTRU transmits a preamble using the selected signature via the selected RACH subchannel at a predetermined or computed transmission power. A base station monitors the RACH to detect the preamble and sends an acquisition indicator (AI) to the WTRU when a signature is detected on the RACH. When receiving a positive acknowledgement, the WTRU sends a message part to the base station. If receiving a negative acknowledgement or no response, the WTRU retransmits the preamble.