Abstract:
Disclosed is a method of manufacturing a printed circuit board. The method of manufacturing a printed circuit board having a via for interlayer connection can include forming a circuit pattern on one side of a carrier, pressing one side of the carrier into one side of the insulator, removing the carrier, forming a hole penetrating through the insulator by processing one end of the circuit pattern, and forming a conductive material inside the hole to have the conductive material correspond to the via.
Abstract:
A manufacturing method of bottom substrate of package. A bottom substrate of a package on package electrically connected to a top substrate by means of a solder ball, including a core board, a solder ball pad formed on a surface of the core board in correspondence with a location of the solder ball, an insulation layer laminated on the core board, a through hole formed by removing a part of the insulation layer such that the solder ball pad is exposed, and a metallic layer filled in the through hole and connected electrically with the solder ball, allows the number of ICs mounted on a bottom substrate to be increased without increasing the size of a solder ball, and allows the size and pitch of the solder balls to be made smaller by controlling the thickness of the insulation layer laminated on the bottom substrate, whereby more signal transmission is possible between a top substrate and a bottom substrate.
Abstract:
A manufacturing method for rigid-flexible multi-layer printed circuit board including: a flexible substrate of which circuits are formed on both sides and which is bendable; a rigid substrate which is laminated on the flexible substrate and circuits are formed on both sides and a cavity within which a semiconductor chip is mounted is formed; and a bonding sheet adhering the flexible substrate and the rigid substrate and having a insulating property. When the same numbers of the semiconductor chips are mounted or the POP is embodied, the whole thickness of the package can be lower. Also, two more semiconductor chips can be mounted using the space as the thickness of the core layer, and the structure impossible when the number of semiconductor chip mounted on the bottom substrate becomes two from one in conventional technology can be embodied.
Abstract:
A metal clad laminate and a method of manufacturing the metal clad laminate are disclosed. The metal clad laminate can include a barrier layer made of a metallic material, a metal foil formed on one side of the barrier layer and coupled with the barrier layer by plating, and an insulator attached to the metal foil. By utilizing the metal clad laminate, the metal foil can be prevented from being perforated when processing a via hole using laser, so that a VOP structure may be implemented with a higher level of reliability.
Abstract:
A method of manufacturing a circuit board that includes: forming a conductive relievo pattern, including a first plating layer, a first metal layer, and a second plating layer stacked sequentially in correspondence with a first circuit pattern, on a seed layer stacked on a carrier; stacking and pressing together the carrier and an insulator, such that a surface of the carrier having the conductive relievo pattern faces the insulator; transcribing the conductive relievo pattern into the insulator by removing the carrier; forming a conduction pattern, including a third plating layer and a second metal layer stacked sequentially in correspondence with a second circuit pattern, on the surface of the insulator having the conductive relievo pattern transcribed; removing the first plating layer and seed layer; and removing the first and second metal layers, can provide a circuit board that has high-density circuit patterns without an increased amount of insulator.
Abstract:
A method of manufacturing a circuit board is disclosed. The method may include: forming a relievo pattern, which is in a corresponding relationship with a circuit pattern, on a metal layer that is stacked on a carrier; stacking and pressing the carrier onto an insulation layer with the relievo pattern facing the insulation layer; transcribing the metal layer and the relievo pattern into the insulation layer by removing the carrier; forming a via hole in the insulation layer on which the metal layer is transcribed; and filling the via hole and forming a plating layer over the metal layer by performing plating over the insulation layer on which the metal layer is transcribed. As the relievo pattern may be formed on the metal layer stacked on the carrier, and the relievo pattern may be transcribed into the insulation layer, high-density circuit patterns can be formed.
Abstract:
A printed circuit board manufacturing method is disclosed. The printed circuit manufacturing method, which includes forming an adhesive layer on a carrier, adhesiveness of the adhesive layer being changed according to heat; forming a circuit pattern on a surface of the adhesive layer; compressing the carrier into the insulation layer to allow the circuit pattern to face the insulation layer; and separating the carrier from the insulation layer by supplying heat to allow the adhesive to reach a predetermined temperature, can reduce a cost of a transferring process and improve the reliability of products by minimizing the affect on a metal pattern, by using a material having the adhesiveness changed according to the temperature as an adhesive layer.
Abstract:
A method of manufacturing a printed circuit board is disclosed. Using the method, which includes embedding a first circuit pattern and a second circuit pattern in one side and the other side of an insulation substrate, forming a via hole by removing portions of the insulation substrate and the first circuit pattern, and electrically connecting the first circuit pattern and the second circuit pattern by forming a plating layer in the via hole, it is possible to form high-density circuits, as circuitry may be formed in portions that might have been occupied by lands, and more circuitry may be implemented for a given area of insulation substrate, whereby a fine-patterned printed circuit board may be implemented that has a high degree of integration. Also, a printed circuit board can be produced which allows good signal transfers between layers and with which fine circuit patterns can be implemented with inexpensive costs.
Abstract:
A buried pattern substrate and a manufacturing method thereof are disclosed. A method of manufacturing a buried pattern substrate having a circuit pattern formed on a surface, in which the circuit pattern is connected electrically by a stud bump, includes (a) forming the circuit pattern and the stud bump by depositing a plating layer selectively on a seed layer of a carrier film, where the seed layer is laminated on a surface of the carrier film, (b) laminating and pressing the carrier film on an insulation layer such that the circuit pattern and the stud bump face the insulation layer, and (c) removing the carrier film and the seed layer, allows the circuit interconnection to be realized using a copper (Cu) stud bump, so that a drilling process for interconnection is unnecessary, the degree of freedom for circuit design is improved, a via land is made unnecessary and the size of a via is small, to allow higher density in a circuit.
Abstract:
The present invention relates to a printed circuit board, and in particular, to a printed circuit board for a package of electronic components and manufacturing method thereof. One aspect of present invention provides a manufacturing method of a printed circuit board for an electronic component package, which includes: forming a circuit pattern including bonding pads on one side of a first insulation layer, laminating a second insulation layer onto one side of the first insulation layer, and exposing the bonding pads by removing a part of the first insulation layer and the second insulation layer corresponding to the location in which the bonding pads is formed.