Abstract:
An apparatus, in one embodiment, can include a configuration including a plurality of heat generation devices. The apparatus also includes a plurality of thermal sensors respectively, operably connected to each of the plurality of heat generation devices, wherein each thermal sensor of the plurality of thermal sensors includes a respective output terminal configured to provide a voltage representative of the temperature of the respective heat generation device. The apparatus further includes an output circuit configured to output the highest temperature information among the heat generation devices. The output terminals of the plurality of thermal sensors are tied together. A corresponding method is also discussed.
Abstract:
A battery management method and apparatus. In one embodiment of the method, a source current is divided into Ic and Icr. Ic is transmitted to and charges a battery. A first voltage is generated that is related to Icr. The first voltage is converted into a first digital signal. A processing unit receives and processes the first digital signal in accordance with instructions stored in a memory. The transmission of Ic to the battery is interrupted in response to the processing unit processing the first digital signal. Current provided by the battery is divided into Idc and Idcr. Idc is transmitted to a device. A second voltage is generated that is related to Idcr. The second voltage is converted into a second digital signal. The processing unit receives and processes the second digital signal in accordance with instructions stored in the memory. The transmission of Idc to the battery is interrupted in response to the processing unit processing the second digital signal.
Abstract:
A trench MOSFET is disclosed that includes a semiconductor substrate having a vertically oriented trench containing a gate. The trench MOSFET further includes a source, a drain, and a conductive element. The conductive element, like the gate is contained in the trench, and extends between the gate and a bottom of the trench. The conductive element is electrically isolated from the source, the gate, and the drain. When employed in a device such as a DC-DC converter, the trench MOSFET may reduce power losses and electrical and electromagnetic noise.
Abstract:
A trench MOSFET is disclosed that includes a semiconductor substrate having a vertically oriented trench containing a gate. The trench MOSFET further includes a source, a drain, and a conductive element. The conductive element, like the gate is contained in the trench, and extends between the gate and a bottom of the trench. The conductive element is electrically isolated from the source, the gate, and the drain. When employed in a device such as a DC-DC converter, the trench MOSFET may reduce power losses and electrical and electromagnetic noise.
Abstract:
A battery management method and apparatus. In one embodiment of the method, a source current is divided into Ic and Icr. Ic is transmitted to and charges a battery. A first voltage is generated that is related to Icr. The first voltage is converted into a first digital signal. A processing unit receives and processes the first digital signal in accordance with instructions stored in a memory. The transmission of Ic to the battery is interrupted in response to the processing unit processing the first digital signal. Current provided by the battery is divided into Idc and Idcr. Idc is transmitted to a device. A second voltage is generated that is related to Idcr. The second voltage is converted into a second digital signal. The processing unit receives and processes the second digital signal in accordance with instructions stored in the memory. The transmission of Idc to the battery is interrupted in response to the processing unit processing the second digital signal.
Abstract:
A simple battery and battery charger. In one embodiment, the battery charger includes an output terminal that provides a charging voltage Vout and charging current Iout. The battery is contained in a battery pack having an input terminal, which can be connected to the output terminal in order to receive Vout and Iout. The battery charger may include a first circuit for controlling the magnitude of Vout. The battery pack may include a second circuit that generates a control signal when the output terminal is connected to the input terminal. The first circuit is configured to control the magnitude of Vout based on the control signal.
Abstract:
A step down convertor with a distributed driving system. In one embodiment, an apparatus is disclosed that includes an inductor coupled to an output node. The apparatus also includes first and second circuits. The first circuit can transmit current to the output node via the inductor, and the second can transmit current to the output node via the inductor. The apparatus also includes a third circuit for modifying operational aspects of the first circuit or the second circuit based on a magnitude of current flowing through the inductor.
Abstract:
An apparatus, in one embodiment, can include a configuration including a plurality of heat generation devices. The apparatus also includes a plurality of thermal sensors respectively, operably connected to each of the plurality of heat generation devices, wherein each thermal sensor of the plurality of thermal sensors includes a respective output terminal configured to provide a voltage representative of the temperature of the respective heat generation device. The apparatus further includes an output circuit configured to output the highest temperature information among the heat generation devices. The output terminals of the plurality of thermal sensors are tied together. A corresponding method is also discussed.
Abstract:
A method and apparatus for isolating voltages while transmitting data signals. In one embodiment of the method, a modulation circuit modulates a carrier signal using an input data signal. A demodulation circuit receives the modulated carrier signal via a first capacitor coupled in series between the modulation circuit and the demodulation circuit. The demodulation circuit also receives the carrier signal via a second capacitor coupled in series between the demodulation circuit and the circuit that generates the carrier signal. The demodulation circuit demodulates the modulated carrier signal using the carrier signal.
Abstract:
An apparatus that includes a first device connected to an inductor. The first device includes a first silicon carbide (SiC) junction gate field-effect transistor (JFET), a first SiC schottky barrier diode (SBD) connected to a gate and a drain of the first SiC JFET, and a first silicon (Si) transistor connected to transmit current to a source of the first SiC JFET. An inductor input terminal is connected to the drain of the first SiC JFET.