Abstract:
A spray nozzle system for skin treatments includes separate air outlets moving over the skin surface to deliver one or more streams of supplemental air for the purpose of warming or drying the skin surface to improve efficacy and comfort of the spraying experience. The drying air from the auxiliary ports may be applied while spray is emitted from the nozzle to increase the spray cloud temperature, or may be applied before or after the spray application, with the spray turned off, to warm or dry the skin. A heating source is provided to warm the air directed through one or more heated air ports. In the case of air-atomizing nozzles, the heated air is delivered through low pressure ports separately from the air emitted through the nozzle's higher pressure atomizing and pattern shaping orifices to minimize the expansion cooling effect inherent with the spray nozzle ports. In another implementation, the airflow is redirected from the nozzle jets to one or more of the supplemental ports using a control valve which proportions the amount of airflow directed to the main atomizer air jets, the pattern shaping air jets and the supplemental air for drying the skin.
Abstract:
An electrostatic spray charging nozzle designed for optimum charge level over a wide range of liquid and air flow rates. The electrostatic spray charging nozzle includes a nozzle cap having an outlet, a nozzle body having a first bore, and a fluid tip assembly extending at least partially through the first bore. The fluid tip assembly further includes a liquid inlet adapted to be connected to a source of liquid, and a liquid outlet adapted to dispense the liquid through the outlet of the nozzle body. The electrostatic spray charging nozzle further includes an adjustment mechanism operable to move the fluid tip assembly within the first bore so as to adjust a longitudinal distance between the liquid outlet of the fluid tip assembly and the outlet of the nozzle cap.
Abstract:
A spray device for coating a surface of a human body with a spray liquid, the spray device including at least one nozzle and at least one liquid container, wherein the at least one liquid container is adapted to hold a volume of spray liquid substantially equal to an amount required to apply a single dosage of the spray liquid for coating a surface of a human body. The spray device further includes a liquid channel adapted to connect the at least one liquid container to the at least one nozzle, and a spray valve adapted to cause the spray liquid to flow from the at least one liquid container to the at least one nozzle using the liquid channel. The spray device still further includes a control device adapted to control the operation of the spray device; and a mounting device for mounting the spray device to a mounting surface.
Abstract:
A spray device for coating a surface of a human body with a spray liquid, the spray device including at least one nozzle and at least one liquid container, wherein the at least one liquid container adapted to hold a volume of spray liquid substantially equal to an amount required to apply a single dosage of the spray liquid for coating a surface of a human body. The spray device further includes a liquid channel adapted to connect the at least one liquid container to the at least one nozzle, and a spray valve adapted to cause the spray liquid to flow from the at least one liquid container to the at least one nozzle using the liquid channel, the at least one nozzle producing a spray jet of the spray liquid. The spray device still further includes a control device adapted to control the operation of the spray device, and a sweeping device for sweeping the spray jet from the at least one nozzle to coat at least a portion of the human body.
Abstract:
The disclosed invention relates to electrostatic spraying systems for liquids and specifically to an improved spray-charging nozzle system having increased reliability, consistency, safety and power efficiency for long-term operation in harsh agricultural and industrial applications. The invention achieves these advantages by: a) management of the interaction of any externally-originating electric fields with the droplet-charging electric-induction field being applied within the nozzle, including partial or total exclusion of the former fields; b) maintenance of the charge-induction electric field at the droplet-formation zone by precluding or minimizing leakage of charge in all directions from the induction electrode; c) protection of electronic and nozzle components from damage due to inadvertent overcurrents; and d) facilitation of non-tedious, convenient, trouble-free inspection and cleaning of the nozzle under harsh field conditions.
Abstract:
An electrostatic sprayer for spraying a liquid includes a nozzle formed from a a nozzle body that has an inlet for receiving a liquid and a liquid tip having an outlet for ejection of the liquid to form a liquid spray. The nozzle also includes an electrode disposed around the outlet of the liquid tip for charging the liquid and a dielectric shroud disposed around at least a portion of the liquid tip to prevent leakage currents from reducing a potential of the electric field between the liquid and the electrode, which would otherwise reduce the effectiveness of the sprayer. A conductor that couples the electrode to a power supply may pass through a hole extending through the shroud. The shroud may include one or more vents to permit air and liquid to pass through the dielectric shroud to reduce accumulation of liquid.
Abstract:
A system for controlling a hand held skin treatment sprayer includes a base unit that is operable to control an air source. The base unit is also operable to control a heating unit that is associated with the hand held skin treatment sprayer. The air source is coupled to a nozzle of the hand held skin treatment sprayer by an air conduit, and the heating unit is disposed within that air conduit. Air flowing through the air conduit is heated by the heating unit. This heated air may be applied while spray is emitted from the nozzle to increase the spray cloud temperature, or may be applied before or after the spray application, with the spray turned off, to warm or dry the skin.
Abstract:
A hand held spray system for skin treatments includes air outlets for delivering heated air to improve the efficacy and comfort of the spraying experience. The heated air may also heat a liquid tip and transfer this heat to the skin treatment. The heated air may be applied while spray is emitted from the nozzle to increase the spray cloud temperature, or may be applied before or after the spray application, with the spray turned off, to warm or dry the skin. The spray system includes a heating source to warm the air as it passes through the system and is delivered through atomizing and/or pattern shaping orifices.
Abstract:
A controlled application of warm dry air is provided during and/or between applications of sprays in an automated spray system. Short multiple passes of the spray cloud over the human target are provided, each being followed by application of warmed dry air for a short drying cycle that is effectuated between the individual spray passes. When the system is implemented in a booth or enclosure, warmed dry air may be supplied into the environment so as to warm the ambient air temperature prior to spraying.
Abstract:
A metering system includes a pumping device having one or more cylinders, each cylinder having a piston therein that is moved by an automated drive system to produce uniform or proportional flow to a single spray nozzle or a plurality of nozzles. The cylinders are mounted between a common base and a common metering plate. Movement of the metering plate relative to the base causes the pistons to slide within the cylinders to provide pulse-free fluid pumping. A rinsing cylinder or dual-action cylinder can also be included to provide delivery of a rinsing agent or multiple liquids to one or more of the spray nozzles simultaneously or in sequence.