Abstract:
The present invention provides an integrated circuit including a substrate, a first transistor, a second transistor and a third transistor. The first transistor has a first metal gate including a first bottom barrier layer, a first work function metal layer and a first metal layer. The second transistor has a second metal gate including a second bottom barrier layer, a second work function metal layer and a second metal layer. The third transistor has a third metal gate including a third bottom barrier layer, a third work function metal layer and a third metal layer. The first transistor, the second transistor and the third transistor has the same conductive type. A nitrogen concentration of the first bottom barrier layer>a nitrogen concentration of the second bottom barrier layer>a nitrogen concentration of the third bottom barrier layer.
Abstract:
A magnetic tunnel junction (MTJ) device includes two magnetic tunnel junction elements and a magnetic shielding layer. The two magnetic tunnel junction elements are arranged side by side. The magnetic shielding layer is disposed between the magnetic tunnel junction elements. A method of forming said magnetic tunnel junction (MTJ) device includes the following steps. An interlayer including a magnetic shielding layer is formed. The interlayer is etched to form recesses in the interlayer. The magnetic tunnel junction elements fill in the recesses. Or, a method of forming said magnetic tunnel junction (MTJ) device includes the following steps. A magnetic tunnel junction layer is formed. The magnetic tunnel junction layer is patterned to form magnetic tunnel junction elements. An interlayer including a magnetic shielding layer is formed between the magnetic tunnel junction elements.
Abstract:
A magnetic tunnel junction (MTJ) structure of a magnetic random access memory (MRAM) cell includes an insulation layer, a patterned MTJ film stack, an aluminum oxide protection layer, an interlayer dielectric, and a connection structure. The patterned MTJ film stack is disposed on the insulation layer. The aluminum oxide protection layer is disposed on a sidewall of the patterned MTJ film stack, and the aluminum oxide protection layer includes an aluminum film oxidized by an oxidation treatment. The interlayer dielectric covers the aluminum oxide protection layer and the patterned MTJ film stack. The connection structure penetrates the interlayer dielectric above the patterned MTJ film stack, and the connection structure is electrically connected to a topmost portion of the patterned MTJ film stack.
Abstract:
A manufacturing method of a magnetic random access memory (MRAM) cell includes the following steps. A magnetic tunnel junction (MTJ) film stack is formed on an insulation layer. An aluminum mask layer is formed on the MTJ film stack. A hard mask layer is formed on the aluminum mask layer. An ion beam etching (IBE) process is performed with the aluminum mask layer and the hard mask layer as a mask. The MTJ film stack is patterned to be a patterned MTJ film stack by the IBE process, and at least apart of the aluminum mask layer is bombarded by the IBE process for forming an aluminum film on a sidewall of the patterned MTJ film stack. An oxidation treatment is performed, and the aluminum film is oxidized to be an aluminum oxide protection layer on the sidewall of the patterned MTJ film stack by the oxidation treatment.
Abstract:
A manufacturing method of a magnetic random access memory (MRAM) cell includes the following steps. A magnetic tunnel junction (MTJ) film stack is formed on an insulation layer. An aluminum mask layer is formed on the MTJ film stack. A hard mask layer is formed on the aluminum mask layer. An ion beam etching (IBE) process is performed with the aluminum mask layer and the hard mask layer as a mask. The MTJ film stack is patterned to be a patterned MTJ film stack by the IBE process, and at least apart of the aluminum mask layer is bombarded by the IBE process for forming an aluminum film on a sidewall of the patterned MTJ film stack. An oxidation treatment is performed, and the aluminum film is oxidized to be an aluminum oxide protection layer on the sidewall of the patterned MTJ film stack by the oxidation treatment.
Abstract:
The present invention provides a semiconductor structure, the semiconductor structure includes a fin transistor (fin filed effect transistor, finFET) located on a substrate, the fin transistor includes a gate structure crossing over a fin structure, and at least one source/drain region. And a resistive random access memory (RRAM) includes a lower electrode, a resistance switching layer and a top electrode being sequentially located on the source/drain region and electrically connected to the fin transistor.
Abstract:
Provided is a FinFET including a substrate, at least one fin and at least one gate. A portion of the at least one fin is embedded in the substrate. The at least one fin includes, from bottom to top, a seed layer, a stress relaxation layer and a channel layer. The at least one gate is across the at least one fin. A method of forming a FinFET is further provided.
Abstract:
A semiconductor device comprises a semiconductor substrate and a semiconductor fin. The semiconductor substrate has an upper surface and a recess extending downwards into the semiconductor substrate from the upper surface. The semiconductor fin is disposed in the recess and extends upwards beyond the upper surface, wherein the semiconductor fin is directly in contact with semiconductor substrate, so as to form at least one semiconductor hetero-interface on a sidewall of the recess.
Abstract:
A manufacturing method of a semiconductor device comprises the following steps. First, a substrate is provided, at least one fin structure is formed on the substrate, and a metal layer is then deposited on the fin structure to form a salicide layer. After depositing the metal layer, the metal layer is removed but no RTP is performed before the metal layer is removed. Then a RTP is performed after the metal layer is removed.
Abstract:
Provided are a resistive random access memory and a manufacturing method thereof. The resistive random access memory includes a substrate having a pillar protruding from a surface of the substrate, a gate surrounding a part of a side surface of the pillar, a gate dielectric layer, a first electrode, a second electrode, a variable resistance layer, a first doped region and a second doped region. The gate dielectric layer is disposed between the gate and the pillar. The first electrode is disposed on a top surface of the pillar. The second electrode is disposed on the first electrode. The variable resistance layer is disposed between the first electrode and the second electrode. The first doped region is disposed in the pillar below the gate and in a part of the substrate below the pillar. The second doped region is disposed in the pillar between the gate and the first electrode.