Abstract:
A device for examining the optical properties of surfaces includes a first radiation source which emits radiation to an examination surface, at least one first detector device, for detecting the radiation reflected off the surface and emitting at least one signal that is characteristic of at least one parameter of the detected radiation, wherein the detector device includes a plurality of image capturing components arranged in a specified detection area and wherein a control is provided for compensating signal changes caused by a shift of the location where the reflected radiation is incident on the detection area.
Abstract:
Radiation is irradiated by an irradiation device at a pre-set angle of incidence with respect to the surface onto the surface to be investigated, and the radiation scattered and/or reflected by this surface arrives at a radiation detector device arranged at a pre-set detection angle with respect to the surface and having an image-recording unit which records black-and-white images, wherein this radiation detector device permits a spatially resolved detection of the radiation reaching it. The irradiation device directs radiation in a first wavelength range onto the surface and the image-recording unit records a first spatially resolved image of this radiation scattered and/or reflected from the surface and the irradiation device directs radiation in a second wavelength range onto the surface and the image-recording unit records a second spatially resolved image of this radiation scattered and/or reflected from the surface.
Abstract:
A method for optical investigation of textured surfaces involves the steps of irradiation of radiation onto the surface to be investigated; reception of an image from at least part of the radiation irradiated onto the surface and reflected by the surface; location-resolved evaluation of the image recorded and determination of at least one value K which is characteristic of this image. A parameter G which is characteristic of the surface is determined while using the characteristic value K and while using at least one further property E known beforehand or determined of the surface.
Abstract:
A colour measuring unit (1) comprising a radiation device (2) which emits light onto a surface (9) to be examined, wherein the radiation device (2) comprises at least one semiconductor-based light source (6), and a radiation detector device (12) which receives at least a portion of the light scattered by the surface and outputs a signal characteristic of this light, wherein the radiation detector device (12) allows a spectral analysis of the light impinging thereon. According to the invention, the colour measuring unit comprises at least one sensor device (10) which determines at least one electrical parameter of the light source (6), and also a processor device (14) which outputs from this measured parameter at least one value characteristic of the light emitted by the radiation device (2).
Abstract:
An apparatus (1) for analysing surface properties, comprising a first radiation device (4) which emits radiation directly onto a surface (9) to be analysed, a first illumination device (6, 7) for indirectly illuminating the surface (9) to be analysed, a first radiation detector device (8) which receives at least part of the radiation thrown back from the surface (9) to be analysed and outputs at least one signal which is characteristic of this part of the radiation. According to the invention, a radiation scattering device (10, 11) is provided which is at least partially illuminated by the first illumination device (6, 7) and which transmits scattered radiation onto the surface (9) to be analysed.
Abstract:
A device for determining the properties of surfaces having at least one first radiation means having a least one radiation source which emits radiation, at least one radiation detector means which captures at least a portion of the radiation emmitting from the at least one radiation source and then diffused and/or reflected off a measurement surface and emits at least one measurement signal which is characteristic of the reflected and/or diffused radiation, an optical divider means having a specified thickness positioned in the optical path between the radiation means and the radiation detector means. The optical divider means includes at least one aperture extending at least in sections at a specified angle different from 0 degrees to the thickness of said optical divider means.
Abstract:
A method and a device for a spatially resolved examination and evaluation of the properties of surfaces, in particular such properties of surfaces which affect the optical impression which the surface makes. A defined radiation is directed at a first predetermined solid angle to an examined surface. Furthermore, at least a portion of the radiation affected by the examined surface in particular by diffusion and reflection, is detected at a second predefined solid angle. At least one measured variable is spatially resolved captured which characterizes at least one predetermined property of the radiation affected by the examined surface. At least over a portion of the spatially resolved measured values at least one statistical parameter for characterizing the surface is determined.
Abstract:
Illuminating means for illuminating a measurement surface and device for determining the properties of reflective objects. The illuminating means comprises a radiating means having radiation sources, an aperture means and a scattering means. The scattering means is arranged in the path of radiation and the light emitted by the sources of radiation is directable to the aperture means. The device comprises an illuminating means as a first optical means which radiates light onto a measurement surface. Said first optical means has a radiating means comprising radiation sources, an aperture means and a scattering means arranged in the path of radiation. The light emitted by the sources of radiation is directable to the aperture means. A second optical means is configured as detector means and registers the light reflected from the measurement surface. Said detector means outputs a measurement value which is characteristic for at least a portion of the light as received. A memory means is furthermore provided and a control means serves for the controlling of the measurement sequence, wherein a characteristic parameter which characterizes the measurement surface is determined.
Abstract:
A device for examining the optical properties of surfaces includes at least one first radiation device emitting radiation to a surface to be examined at least at a first predetermined spatial angle, at least one first detector for capturing the radiation emitted to and reflected back from the surface, wherein the detector, allowing a local resolution of detected radiation, is positioned at least at a second predetermined spatial angle relative to the surface. At least one spatial angle at which the radiation device and/or the detector are positioned, is variable and the radiation device and the detector are positioned in a space at least part of which exhibits light-reflecting properties.
Abstract:
The proposed method of temperature compensation for opto-electronic devices, more specifically opto-electronic semiconductor devices, involves operation of the device under predetermined constant conditions, where a first temperature dependent characteristic value is measured which is then compared with a comparison value determined under identical constant conditions but at a different temperature. A correction function is derived from the relationship between the characteristic value and the comparison value and used to correct the measured value obtained from the semiconductor device so as to compensate for the effect of temperature.