Abstract:
A screening method includes controlling a heat source of a screening device to reach a selected temperature, determining a location of a subject, and determining that the location is a desired distance from the screening device. The method also includes based at least in part on determining that the location is the desired distance from the screening device, simultaneously determining a temperature of the subject and a temperature of the heat source using a temperature sensor of the screening device.
Abstract:
A temperature probe includes a handle and a shaft extending from the handle. The shaft includes a distal end, a proximal end, and a tip at the distal end. The temperature probe also includes a capacitance sensor disposed on one of the handle and the shaft, the capacitance sensor configured to measure a change in capacitance when positioned proximate a conductor. The temperature probe further includes a temperature sensor disposed on the shaft, the temperature sensor configured to measure a body cavity temperature of a patient.
Abstract:
A method of determining a temperature of a patient includes determining that a temperature measurement device is located within at least one of a distance range and an alignment range of a portion of a measurement site of the patient, providing an indication to a user of the device that the device is located within the at least one of the distance range and the alignment range, and determining, with the device, a first temperature of a first location on the portion of the measurement site without contacting the patient with the device. Such a method also includes determining, with the device, a second temperature of a second location on the portion of the measurement site without contacting the patient with the device, wherein the second location is different from the first location. Such a method further includes determining a third temperature of the patient based on the first and second temperatures.
Abstract:
A physiological parameter measuring system includes a parameter sensing device attachable to a body of the subject. The sensing device detects at least one physiological parameter when activated, and a reading device monitors a temperature variation over time and determines whether the parameter has been so stabilized as to be reliably detected. A stability indication flag can be stored in the system so that subsequent monitoring of the parameter is instantly performed.
Abstract:
A protective cover for an insertion probe of a medical instrument. The cover contains a flexible tubular body that compliments the probe geometry and a radially disposed flange that surrounds the proximal end of the body. A series of snap-on fasteners removably connect the cover to the instrument. A camming surface is located on the outer face of the flange which coacts with a cam follower that is movably mounted upon the instrument to flex the cover sufficiently to open the fastener and release the cover from the instrument and move the cover axially toward the distal end of the tip.
Abstract:
A physiological parameter measuring system includes a parameter sensing device attachable to a body of the subject. The sensing device detects at least one physiological parameter when activated, and a reading device monitors a temperature variation over time and determines whether the parameter has been so stabilized as to be reliably detected. A stability indication flag can be stored in the system so that subsequent monitoring of the parameter is instantly performed.
Abstract:
A medical device system includes one or more anti-loss/anti-theft mechanisms. The medical device system comprises a wireless medical device and a docking station. An alarm is activated on one or more of the wireless medical device or the docking station when an alarm threshold is detected by one of the anti-loss/anti-theft mechanisms.
Abstract:
The present invention relates to a thermometer for determining the temperature of an animal's ear drum. The thermometer includes a probe, an infrared-radiation detector adapted to receive infrared radiation emitted by the ear drum, and devices that help determine the probe's position in the ear canal so as to optimize the infrared radiation received from the ear drum, and to minimize the infrared radiation received from other ear parts. A method of using the thermometer is also disclosed.
Abstract:
A physiological monitor device includes a central processing unit (CPU) that is configured to control operation of the device, a display screen, and one or more computer readable data storage media storing software instructions that, when executed by the CPU, cause the device to: create or modify a patient profile, select a patient test, store one or more test parameters selected or entered for the patient test, store one or more thresholds selected or entered for at least one of the test parameters, store one or more instructions for the patient, start the test, display test results while the test is in progress, determine whether any of the test parameters exceed limits set by the one or more thresholds, take one or more actions when it is determined that one or more of the test parameters exceed the limits set by the one or more thresholds, provide a summary and analysis of the test results, and send the test results to a computing device.