Abstract:
An apparatus comprises a vibrational transducer, a placement band, a driver module and a control module. The placement band is configured to hold the vibrational transducer adjacent to the skin surface overlying the cricoid cartilage and trachea region of a patient's neck. The driver module is configured to apply a drive signal to the vibrational transducer. The control module is configured to receive at least one input configured to provide vibrational operating information and control the driver module to cause the vibrational transducer to apply a vibratory stimulation in an amount determined, at least in part, by the vibrational operating information.
Abstract:
Wireless sensor network motes and radar & sensor-based systems receive sensed data, compare it to a predetermined standard and generate a signal to deploy a corresponding response.
Abstract:
An external defibrillator system is provided. The system includes: a graphical display; one or more sensors for obtaining data regarding chest compressions performed on a patient; and a controller configured to display on the graphical display numeric values for depth and/or rate of the chest compressions based upon the data from the one or more sensors. A method for using an external defibrillator including the steps of: obtaining data regarding chest compressions performed on a patient; and displaying on a graphical display screen of the defibrillator numeric values for depth and/or rate of the chest compressions based upon the data is also provided.
Abstract:
Technologies are disclosed herein for a low impedance detection system. The detection system includes an electrical insulation and an impedance measurement device. The impedance measurement device can be used to test the impedance of the system when the barrier is placed between the user of the barrier and a source of electrical power. In a defibrillation system, a rescuer can place the barrier over the patient. An electrical power source can deliver electrical shocks to the patient. The impedance measurement device can monitor impedances of the system across various frequencies to detect electrical conditions that might be harmful to the rescuer.
Abstract:
Time after time studies find that often, even when administered by trained professionals, cardiopulmonary resuscitation (CPR) compression rates and depth are inadequate. Too week, shallow or too forceful compressions may contribute to suboptimal patient outcome. Several parameters are crucial for optimal and properly-administered CPR. Crucial parameters include proper hand positioning on the patient's chest, depth of compression of 4-5 cm, and compression rate of 100 compressions per minute. The crucial parameters are often affected by patient parameters, and relative to the patient, rescuer parameters, such as patient thoracic volume; weight; age; gender; and rescuer's, relative to the patient's, parameters, such as weight, height; physical form, etc. Proposed is an automated CPR feedback device with user programmable settings for assisting with real-time feedback and subsequently correcting rescuers patient customized CPR technique.
Abstract:
A method for providing emergency care to a patient of an adverse cardiac event is disclosed that includes causing multiple chest compressions to be provided to the patient, and causing multiple inducements of ventilation to be provided to the patient. Particular ones of the multiple chest compressions can overlap time-wise with corresponding ones of the multiple inducements of ventilation, and can be substantially out of phase with the corresponding ones of the multiple inducements of ventilation.
Abstract:
The present invention relates to a tactile exercise mat (1) and a method of operating it. The tactile exercise mat comprises a plurality of actuators (2, 6, 7, 8, 9, 30, 31) distributed therein and a controller adapted to control the plurality of actuators. The controller is adapted to access predefined actuator configurations defining exercise configurations and to control the actuators in accordance with the predefined actuator configurations. In an advantageous embodiment, the controller is communicatively connected to one or more sensors for sensing the actual movement of the user.
Abstract:
Systems and methods related to the field of cardiac resuscitation, and in particular to devices for assisting rescuers in performing cardio-pulmonary resuscitation (CPR) are described herein.
Abstract:
A method to treat a dry eye condition of an individual, includes: receiving a switch signal generated based on a manipulation of a control switch at a handheld device; and activating a motor in response to the switch signal to oscillate a member at an oscillation frequency, the member having an elongated configuration, and having a portion for placement outside the individual; wherein the oscillation frequency is sufficient to induce tear production when the portion of the member is applied towards a surface of a body portion of the individual.
Abstract:
An example of a system for providing emergency care to a patient includes an automated chest compression device configured to engage the patient at the patient's sternum to provide multiple chest compression cycles to the patient's sternum, an automated mechanical ventilation device to induce negative pressure ventilation, and a controller operably coupled to the automated chest compression device and the automated mechanical ventilation device and including one or more processors configured to control the automated chest compression device to cyclically perform chest compressions, and control the automated mechanical ventilation device to cyclically induce the negative pressure ventilation out-of-phase with the chest compressions such that the automated mechanical ventilation device cyclically induces the negative pressure ventilation prior to each compression of the patient's sternum.