Abstract:
Apparatus for generating ultraviolet light and methods of operating an ultraviolet light source. The apparatus may include a microwave chamber (16) enclosing an interior space, a light source (10) with a lamp head (28) coupled to the microwave chamber (16), an ultraviolet (UV) transmissive member (88) positioned above the lamp face (32) and below the interior space to define a plenum (116) therebetween, and an exhaust system (100) coupled in fluid communication with the plenum. The lamp head (28) has a lamp face (32) through which ultraviolet light (34) and cooling air (30) are emitted. The UV transmissive member (88) is configured to transmit the ultraviolet light (34) into the interior space and to divert the cooling air (30) from the interior space. The exhaust system (100) configured to exhaust the cooling air (30) from the plenum (116).
Abstract:
The present invention relates to a process for modifying or functionalizing oxide surfaces, such as surfaces of SiO2 and Al2O3, but also metals including alloys such as stainless steel with alkenes or alkynes under mild conditions by photochemical reaction. The process is very well suited to form patterned modified surfaces which are of use for example in microelectronics, biosensing and catalysis.
Abstract translation:本发明涉及通过光化学反应在温和条件下改性或官能化氧化物表面的方法,例如SiO 2和Al 2 O 3的表面,还涉及包括合金如不锈钢与烯烃或炔烃的金属。 该方法非常适合于形成例如在微电子学,生物传感和催化中使用的图案化的改性表面。
Abstract:
A method for coating a device, such as an industrially or medically applicable device, with a polymer layer is provided. The method includes contacting the device with a grafting initiator comprising at least one photoinitiator group, exposing the device to radiation, contacting the device with a polymerizable monomer, and again exposing the device to radiation.
Abstract:
A patterned fine particle film structure includes a fine particle layer including fine particles arranged and bound to a surface of a substrate coated with a patterned film including a first film compound having a first functional group. The fine particles are coated with films including a first coupling agent having a first coupling reactive group that undergoes a coupling reaction with the first functional group to form a bond. The fine particle layer is bound by a bond formed through a coupling reaction. In an embodiment, fine particles coated with films of a film compound that reacts with the first coupling reactive group and the fine particles are alternately bound to the substrate.
Abstract:
A method for coating a device, such as an industrially or medically applicable device, with a polymer layer is provided. The method includes contacting the device with a grafting initiator comprising at least one photoinitiator group, exposing the device to radiation, contacting the device with a polymerizable monomer, and again exposing the device to radiation.
Abstract:
A method of forming a polymer layer on a support surface by the use of a coating agent and polymerizable compounds. The coating agent provides photoreactive groups adapted to attach the agent to the surface, as well as photoreactive groups adapted to remain unattached to the surface, and thus serve as photoinitiators for the activation of polymerizable compounds in order to form a polymer layer thereon. Also provided are coating agents, per se, as well as a method of using such agents and the resultant surfaces and devices fabricated therefrom.
Abstract:
A surface acoustic wave filter includes an antenna terminal, a transmitting filter and a variable branching line both of which are coupled to the antenna terminal and a receiving filter coupled to the variable branching line. The transmitting filter has a first end series-arm SAW resonator, a second end series-arm SAW resonator, a middle series-arm SAW resonator coupled between the first and second end series-arm SAW resonators and parallel-arm SAW resonators. Each of the first and second end series-arm SAW resonator has a first resonance frequency. The middle series-arm SAW resonator has a second resonance frequency that is higher than the first resonance frequency.
Abstract:
A reactor for removing a leaving group from a precursor molecule for a transport polymerization process is disclosed, wherein the reactor includes an exterior unit having an inlet, an outlet, and an interior disposed between the inlet and the outlet, where precursors enter the reactor at the inlet, are converted to a reactive intermediates within the interior, and wherein the reactive intermediates exit at the outlet, and wherein the interior is under a vacuum for at least a duration; a heater body located in said interior, wherein the heater body is at least partially conductively insulated from said reactor; and an energy source coupled outside said reactor for providing energy to said heater body via radiative heat transfer.
Abstract:
A process for the production of a coating layer from a coating composition curable with high-energy radiation on a substrate, comprising the successive steps: a) providing a substrate to be coated, b) applying a backing foil coated on one side with an uncured or at least only partially cured coating layer of a coating composition curable by means of high-energy radiation, with its coated side on the entire surface or at least one sub-zone of the surface of the substrate, c) irradiating the entire coating applied in step b) with high-energy radiation, and d) removing the backing foil from the coating which remains on the substrate; wherein irradiation of the coating proceeds through the backing foil and/or after removal of the backing foil.
Abstract:
A method for preparing coatings of thin films onto solid particle has been achieved by in-situ simultaneous nucleation and deposition of dissolved material out of supercritical fluid, resultant film formation on the solid particles suspended in the supercritical fluid, and subsequent thermal conditioning of the coating in the particles. The coating method involves an enclosed system that provides: 1) for suspension of the solid particles to be coated; 2) for dissolution of the coating material in the supercritical fluid solvent; 3) for temperature or pressure swing operations causing film deposition/coating of the suspended solid particles and; 4) additional chemical addition and/or thermal cycles providing for any additional reactions required (such as polymerization).