Abstract:
A method of forming surface protrusions on an article, and the article with the protrusions attached. The article may be an Integrated Circuit (IC) chip, a test probe for the IC chip or any suitable substrate or nanostructure. The surface protrusions are electroplated to a template or mold wafer, transferred to the article and easily separated from the template wafer. Thus, the attached protrusions may be, e.g., micro-bumps or micro pillars on an IC chip or substrate, test probes on a probe head, or one or more cantilevered membranes in a micro-machine or micro-sensor or other micro-electro-mechanical systems (MEMS) formed without undercutting the MEMS structure.
Abstract:
A method (70) of forming sensor packages (20) entails providing a sensor wafer (74) having sensors (30) formed on a side (26) positioned within areas (34) delineated by bonding perimeters (36), and providing a controller wafer (82) having control circuitry (42) at one side (38) and bonding perimeters (46) on an opposing side (40). The bonding perimeters (46) of the controller wafer (82) are bonded to corresponding bonding perimeters (36) of the sensor wafer (74) to form a stacked wafer structure (48) in which the control circuitry (42) faces outwardly. The controller wafer (82) is sawn to reveal bond pads (32) on the sensor wafer (74) which are wire bonded to corresponding bond pads (44) formed on the same side (38) of the wafer (82) as the control circuitry (42). The structure (48) is encapsulated in packaging material (62) and is singulated to produce the sensor packages (20).
Abstract:
A microelectromechanical system (MEMS) sensor assembly comprises a substrate, a bump stopper extending from the substrate, and a sensor suspended relative to the substrate. The sensor is configured to move relative to the substrate, wherein the bump stopper is configured to restrain the sensor travel distance and prevent contact between the sensor and the substrate. The bump stopper has a surface facing the sensor, wherein an area of contact between the sensor and the surface is less than the total area of the surface.
Abstract:
A low power consumption multi-contact micro electro-mechanical strain/displacement sensor and miniature autonomous self-contained systems for recording of stress and usage history with direct output suitable for fatigue and load spectrum analysis are provided. In aerospace applications the system can assist in prediction of fatigue of a component subject to mechanical stresses as well as in harmonizing maintenance and overhauls intervals. In alternative applications, i.e. civil structures, general machinery, marine and submarine vessels, etc., the system can autonomously record strain history, strain spectrum or maximum values of the strain over a prolonged period of time using an internal power supply or a power supply combined with an energy harvesting device. The sensor is based on MEMS technology and incorporates a micro array of flexible micro or nano-size cantilevers. The system can have extremely low power consumption while maintaining precision and temperature/humidify independence.
Abstract:
A microelectromechanical systems (MEMS) scanning device comprising a torsional beam flexure that has a variable width in relation to a rotational axis for a scanning mirror. The geometric properties of the torsional beam vary along the rotational axis to increase a desired mode of mechanical strain at a location where a strain sensor is operating within the MEMS scanning device to generate a feedback signal. The torsional beam flexure mechanically suspends the scanning mirror from a frame structure. During operation of the MEMS scanning device, actuators induce torsional deformation into the torsional beam flexure to cause rotation of the scanning mirror about the rotational axis. The degree or amount of this torsional deformation is directly related to the angular position of the scanning mirror and, therefore, the desired mode of mechanical strain may be this torsional deformation strain component.
Abstract:
A micro-electro-mechanical system (MEMS) package structure and a method for fabricating the MEMS package structure. The MEMS package structure includes a MEMS die (200) and a device wafer (100). A control unit and an interconnection structure (300) are formed in the device wafer (100), and a first contact pad (410) and an input-output connecting member (420) are formed on a first bonding surface (100a) of the device wafer (100). The MEMS die (200) is coupled to the first bonding surface (100a) through a bonding layer (500). The MEMS die (200) includes a closed micro-cavity (220) and a second contact pad (220). The first contact pad (410) is electrically connected to a corresponding second contact pad (220). An opening (510) that exposes the input-output connecting member (420) is formed in the bonding layer (500). The MEMS package structure allows electrical interconnection between the MEMS die (200) and the device wafer (100) with a reduced package size, compared to those produced by existing integration techniques. In addition, function integration ability of the package structure is improved by integrating a plurality of MEMS dies of the same or different structures and functions on the same device wafer.
Abstract:
According to one embodiment, a sensor includes a first member including a first member surface, and a first element part. The first element part includes a first fixed electrode fixed to the first member surface, and a first movable electrode facing the first fixed electrode. The first fixed electrode is along the first member surface. A gap is located between the first movable electrode and the first fixed electrode. The first movable electrode includes a first surface and a second surface. The first surface is between the first fixed electrode and the second surface. At least one of the first surface or the second surface is non-parallel to the first member surface.
Abstract:
A semiconductor structure includes a first device, a second device, a first hole, a second hole, and a sealing object. The second device is contacted to the first device, wherein a chamber is formed between the first device and the second device. The first hole is disposed in the second device and defined between a first end with a first circumference and a second end with a second circumference. The second hole is disposed in the second device and aligned to the first hole. The sealing object seals the second hole. The first end links with the chamber, and the first circumference is different from the second circumference.
Abstract:
One example discloses a MEMS device, including: a cavity having an internal environment; a seal isolating the internal environment from an external environment outside the MEMS device; wherein the seal is susceptible to damage in response to a calibration unsealing energy; wherein upon damage to the seal, a pathway forms which couples the internal environment to the external environment; and a calibration circuit capable of measuring the internal environment before and after damage to the seal.
Abstract:
A system and/or method for utilizing mechanical motion limiters to control proof mass amplitude in MEMS devices (e.g., MEMS devices having resonant MEMS structures, for example various implementations of gyroscopes, magnetometers, accelerometers, etc.). As a non-limiting example, amplitude control for a MEMS gyroscope proof mass may be accomplished during normal (e.g., steady state) gyroscope operation utilizing impact stops (e.g., bump stops) of various designs. As another non-limiting example, amplitude control for a MEMS gyroscope proof mass may be accomplished utilizing non-impact limiters (e.g., springs) of various designs, for example springs exhibiting non-linear stiffness characteristics through at least a portion of their normal range of operation.