Abstract:
An example provides a method including sputtering a metal catalyst onto a substrate, exposing the substrate to a solution that reacts with the metal catalyst to form a plurality of pores in the substrate, and etching the substrate to remove the plurality of pores to form a recess in the substrate.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
Embodiments are directed to electrochemically fabricating multi-layer three dimensional structures where each layer comprises at least one structural and at least one sacrificial material and wherein at least some metals or alloys are electrodeposited during the formation of some layers and at least some metals are deposited during the formation of some layers that are either difficult to electrodeposit and/or are difficult to electrodeposit onto. In some embodiments, the hard to electrodeposit metals (e.g. Ti, NiTi, W, Ta, Mo, etc.) may be deposited via chemical or physical vacuum deposition techniques while other techniques are used in other embodiments. In some embodiments, prior to electrodepositing metals, the surface of the previously formed layer is made to undergo appropriate preparation for receiving an electrodeposited material. Various surface preparation techniques are possible, including, for example, anodic activation, cathodic activation, and vacuum deposition of a seed layer and possibly an adhesion layer.
Abstract:
The object, to create a method for producing multilayers or multilayer systems wherein the structures generated on a substrate can easily be jointly detached from the substrate and are preserved in a composite, is achieved by the present invention by means of a method for producing implant structures comprising generating a first metal layer on a substrate, generating a second metal layer above the first metal layer, producing a number of multilayered implant structures above the second metal layer, removing the first metal layer between the substrate and the second metal layer, and releasing the implant structures from the substrate in a coherent composite. With the method according to the invention, between the implant structures and the substrate a release layer is generated consisting of two or three metal layers which serve as sacrificial layer in the course of releasing the fully processed multilayers by means of an under-etching process. As a result, a uniform and reliable separation of the finished multilayers from the substrate in a composite is achieved, facilitating the subsequent technology for assembly and interconnection of the implant structures.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
A micromechanical component is described, in particular an acceleration sensor or a rotational speed sensor having functional components which are movably suspended over a substrate, opposite surfaces of the functional components being movable toward one another. The opposite surfaces of the functional components are at least partially coated with a conductive film.