Abstract:
A bioelectrochemical system includes an anode, a saline solution chamber, and a cathode. The anode is at least partially positioned within an anode chamber containing an aqueous reaction mixture including one or more organic compounds and one or more bacteria for oxidizing the organic compounds. The saline solution chamber contains a draw solution and is separated from the anode chamber by a forward osmosis membrane. Water diffuses across the forward osmosis membrane from the aqueous reaction mixture to the draw solution.
Abstract:
A water purification system (1) includes a composite filter cartridge (100) that includes a pretreatment filter cartridge (110) and a filtration membrane assembly (120), and is provided with a raw water inlet (130), a pretreatment water outlet (140), a pressurizing pretreatment water inlet (150), a pure water outlet (160) and a condensed water outlet (170); a raw water inlet pipe (200) connected with the raw water inlet (130); a pure water outlet pipe (300) connected with the pure water outlet (160); a condensed water outlet pipe (400) connected with the condensed water outlet (170); a pretreatment water outlet pipe (500) connected with the pretreatment water outlet (140); a pressurizing pretreatment water inlet pipe (600) connected with the pressurizing pretreatment water inlet (150) and the pretreatment water outlet pipe (500) respectively; and a booster pump (900) disposed on the pretreatment water outlet pipe (500).
Abstract:
The present invention presents a removably secured seal for forming a second stage water-tight seal within a two stage cavity filter head assembly for mating with a complementary manifold having cylindrical (male) bayonet ports. The seal includes a base circumferential seal having a center aperture and sidewall members extending axially upwards from the base seal; the sidewall members being insertable within cavities or slots formed in the second stage recess cylindrical cavity sidewall.
Abstract:
A customizable multi-stage fluid treatment assembly typically includes a connector, a plurality of cartridges, and a cap. The plurality of cartridges have a treatment medium spaced within an interior volume of the individual cartridges, between the ends thereof. The ends of the plurality of cartridges are configured to receive a fluid, bring the fluid into operative contact with the treatment medium, and dispense the fluid from the opposing end of the cartridge. The connector is coupled with one end of the plurality of cartridges and has an inlet and an outlet for receiving and dispensing the fluid to and from an appliance. The cap is coupled with the other end of the plurality of cartridges, enclosing the fluid treatment assembly, which is configured to be received in a cavity of an appliance. The cartridges of the plurality of cartridges may be individually replaced with cartridges to meet customized needs.
Abstract:
A double-pass reverse osmosis (RO) separator module having two stages of RO filtration in a single assembly, including a radially outer RO assembly that surrounds a radially inner RO assembly, wherein each RO assembly includes an RO separation medium. The outer RO assembly may be used for a first-pass of RO filtration in which a first-pass feed liquid enters the outer RO assembly and is separated via reverse-osmosis to provide a permeate liquid and a concentrate liquid. The permeate liquid exiting the outer RO assembly may flow via fluid passages to the inner RO assembly for a second-pass of RO filtration in which the first-pass permeate liquid enters the inner RO assembly as a second-pass feed liquid and is separated via reverse-osmosis to provide a second-pass (i.e., double-filtered) permeate liquid.
Abstract:
A filter unit may include an electrode structure, a fluid-purifying flow path, and a pH adjusting chamber. The electrode structure may include a cathode, a cation exchange membrane, an anion exchange membrane, and an anode in that order. The fluid-purifying flow path may be at least one of a path in the cathode, between the cathode and the cation exchange membrane, between the anion exchange membrane and the anode, and in the anode. The fluid-purifying flow path may include an adsorption function. The pH adjusting chamber may be between the cation exchange membrane and the anion exchange membrane. The pH adjusting chamber may be configured to control the pH of the fluid in the fluid-purifying flow path.
Abstract:
According to an aspect, a hydrogen-containing water generating electrode includes: a positive electrode that is a tubular conductor and includes a plurality of openings in a side portion; an insulator that is provided on an outer peripheral portion of the positive electrode and is in contact with the positive electrode; and a negative electrode that is provided on an outer peripheral portion of the insulator, is a tubular conductor in contact with the insulator, and includes a plurality of openings in a side portion.
Abstract:
A liquid treatment apparatus includes a dielectric tube through which water to be treated flows, a first electrode at least a part of which is disposed in the dielectric tube, a second electrode at least a part of which is disposed in the dielectric tube at a position upstream of the first electrode, a gas supplier operative to generate a bubble by supplying a gas into the water to be treated, and a power supply operative to apply a voltage between the first electrode and the second electrode in a state in which the bubble covers a conductor-exposed portion of the first electrode.
Abstract:
Assemblies designed to facilitate detection of water flow in low water flow situations. In some embodiments, the assembly includes a channel that narrows from an inlet end of the assembly to an outlet end of the assembly to increase the velocity of water flowing through the channel. In some embodiments, the assembly may also include a water delivery mechanism that delivers water flowing through the channel to a flow sensor and enables the detection of water flow, even in low flow situations.
Abstract:
A ballast water treatment plant, as well as a method of operation, configured for treating water to be delivered into a ballast tank is disclosed. The system and method is configured for, during ballast offload operation and by means of a first backwashing water conduit, lead backwashing water from a ballast water filter to a suction side of a ballast water pump. This way, filter backwashing water is circulated through the ballast water pump and the ballast water filter.