Abstract:
A UV reactor for treating water, the reactor includes a UV source, a tube positioned around the UV source, a surrounding structure coaxially surrounding the tube, a flow path positioned between the tube and the surrounding structure for the flow of water to be treated, and a diffusive surface positioned around the surrounding structure to reflect UV light from the UV source back into the flow path.
Abstract:
An optical fluid treatment device comprising at least a holder provided with an aperture, a lamp device at least partly located in the aperture. The aperture comprises a fluid passage extending in a main fluid flow direction between a fluid inlet opening and a fluid outlet opening. The fluid passage extends at least partly along the lamp device, wherein the lamp device has an elongated shape extending substantially perpendicularly to the main fluid flow direction.
Abstract:
There is described a radiation source module for use in a fluid treatment system. The radiation source module comprises a plurality of elongate radiation source elements secured to a frame element, each elongate radiation source element having a longitudinal axis; a first motive element secured to a first side portion of the frame element; and a second motive element secured to a second side portion of the frame element. The first motive element and the second motive element are configured to reversibly translate the plurality of elongate radiation source elements in a direction substantially parallel to the longitudinal axis. A fluid treatment system comprising the radiation source module is also described.
Abstract:
A photoelectrocatalytic oxidizing device having a photoanode being constructed from a conducting metal such as Ti as the support electrode. Alternatively, the photoanode is a composite electrode comprising a conducting metal such as Ti as the support electrode coated with a thin film of sintered nanoporous TiO2. The device is useful in methods for treating an aqueous solution such as groundwater, wastewater, drinking water, ballast water, aquarium water, and aquaculture water to reduce amounts of a contaminant. The method being directed at reducing the amount and concentration of contaminants in an aqueous solution comprising providing an aqueous solution comprising at least one contaminant, and, photoelectrocatalytically oxidizing the contaminant, wherein the contaminant is oxidized by a free radical produced by a photoanode constructed from an anatase polymorph of Ti, a rutile polymorph of Ti, or a nanoporous film of TiO2.
Abstract:
An ultraviolet (UV) irradiation apparatus according to an embodiment includes a treatment tank, a UV irradiation member, a UV sensor, and an air outlet unit. The treatment tank includes a water supply opening to supply therethrough treated water to be further treated and a water drainage opening to drain therethrough the treated water. The UV irradiation member is provided inside the treatment tank and irradiates treated water with UV light when the treated water passes through inside of the treatment tank. The UV sensor is provided inside the treatment tank and measures a dose of UV irradiation from the UV irradiation member. The air outlet unit is connected to an air outlet hole provided at a position higher than a horizontal plane that passes through the UV sensor, and is provided to release, to the outside of the treatment tank, through the air outlet hole, air that accumulates inside the treatment tank when the treated water passes through the inside of the treatment tank.
Abstract:
The invention relates to a device for the sterilization of ballast water on ships by means of UV radiation, with a pump line by means of which ballast water can be taken up and discharged, wherein the pump line is passed through by a number of UV-transparent sheath pipes arranged one behind another in the direction of the pump line and in which UV radiators are arranged for the emission of UV radiation into the pump line and sheath pipes arranged one behind another in the circumferential direction of the pump line are offset by an angle α in relation to one another.
Abstract:
An ultraviolet irradiation system includes: an ultraviolet irradiation apparatus including a plurality of ultraviolet lamps; a flowmeter configured to measure a flow rate of the water to be treated that passes through the ultraviolet irradiation apparatus; and an ultraviolet-dose monitoring and controlling apparatus configured to monitor an ultraviolet dose of the ultraviolet irradiation apparatus and to control outputs of the ultraviolet lamps. The plurality of ultraviolet lamps include a first ultraviolet lamp and a plurality of second ultraviolet lamps. The ultraviolet irradiation apparatus includes: a first measurement head configured to measure an ultraviolet intensity of the first ultraviolet lamp; and a plurality of second measurement heads configured to respectively measure ultraviolet intensities of the plurality of the ultraviolet lamps. A distance between the first ultraviolet lamp and the first measurement head is set to a determined value.
Abstract:
A process has been developed to selectively dissociate target molecules into component products compositionally distinct from the target molecule, wherein the bonds of the target molecule do not reform because the components are no longer reactive with each other. Dissociation is affected by treating the target molecule with light at a frequency and intensity, alone or in combination with a catalyst in an amount effective to selectively break bonds within the target molecule. Dissociation does not result in re-association into the target molecule by the reverse process, and does not produce component products which have a change in oxidation number or state incorporated oxygen or other additives because the process does not proceed via a typical reduction-oxidation mechanism. This process can be used for the remediation of water, particularly ballast water.
Abstract:
A light emitting module including a light source configured to irradiate ultraviolet light, a board on which the light source is disposed, a tube accommodating the board and including a transparent region to transmit the ultraviolet light emitted from the light source, a first base coupled to one side of the tube, a second base coupled to the other side of the tube, a fixation groove disposed in the tube and connected to at least one of the first and second bases, in which the board is coupled to be inserted into the fixation groove, and the fixation groove is spaced apart from a center of the first base when viewed in a cross-section perpendicular to a length direction of the tube.
Abstract:
A water quality measurement device 1 includes a twin tube excimer lamp 2. The inflow pipe 3 is connected to one end of the inner tube 21 of the excimer lamp 2, and the outflow pipe 4 is connected to the other end of the inner tube 21 of the excimer lamp 2. The detector 5 that measures the conductivity of sample water is interposed in the outflow pipe 4. In the water quality measurement device 1, sample water sequentially flows through the inflow pipe 3, the inner tube 21 of the excimer lamp 2, and the outflow pipe 4. Hence, the channel in the water quality measurement device 1 can be simplified. Additionally, the sample water is oxidized by being irradiated with UV light in the inner tube 21 of the excimer lamp 2. Hence, it is possible to irradiate the sample water with UV light from the excimer lamp 2 efficiently.