Abstract:
A system and method of desalination that utilizes a channel formed by a series of opposed rails where the series of opposed rails determines the length of the channel and the distance between opposed rails determines the width of the channel. Non-adjacent rails along the length of the channel are electrically coupled in a pattern and they are sequentially energized to create a potential voltage between opposed pairs of rails that attract ions towards them when ionized water flows through the channel.
Abstract:
The present disclosure provides a liquid treatment device and a liquid treatment method each capable of efficiently generating plasma and treating a liquid in a short time period. A liquid treatment device according to the present disclosure includes a first electrode, a second electrode disposed in a liquid, an insulator disposed surrounding the first electrode through a space, the insulator having an opening portion at a position in contact with the liquid, and a power supply that applies an AC voltage or a pulse voltage between the first electrode and the second electrode.
Abstract:
An apparatus for providing metal ions to a fluid waste stream includes a housing having an inlet port and an outlet port through which the fluid waste stream enters and exits the housing. Within the housing and between the inlet and outlet ports is an electrode assembly that includes first electrode ring assemblies and second electrode ring assemblies. Each first electrode ring assembly includes a first tubular section formed of electrically insulative material and has an interior through which the fluid waste stream flows. One or more first electrode plates span the interior of the first tubular section and contact the fluid waste stream. Each second electrode ring assembly includes a second tubular section formed of electrically insulative material and has an interior through which the fluid waste stream flows. One or more second electrode plates span the interior of the second tubular section and contact the fluid waste stream. The first tubular sections of the first electrode ring assemblies are in fluid communication with the second tubular sections of the second electrode ring assemblies.
Abstract:
Systems and methods for the desalination of seawater or brackish water for the purpose of obtaining potable water. Systems may include a combination of electrodialysis and electrodeionization modules. The system configuration and process controls may achieve low energy consumption and stable operation.
Abstract:
A device selected from the group consisting of an electrodialysis or reverse electrodialysis unit, an electrodeionization module and a flow through capacitor, the device comprising a membrane obtained from a process comprising the following steps: applying a curable composition to a support; and curing the composition to form a membrane; wherein the curable composition comprises: (i) 2.5 to 50 wt % crosslinker comprising at least two acrylamide groups; (ii) 12 to 65 wt % curable ionic compound comprising an ethylenically unsaturated group and a cationic group; (iii) 10 to 70 wt % solvent; (iv) 0 to 10 wt % of free radical initiator; and (v) non-curable salt comprising a cation and an anion, wherein the anion is not sulfate; wherein the molar ratio of (i):ii) is greater than 0.10 and less than 5.
Abstract:
A supercapacitor desalination cell comprises a first electrode, a second electrode, a spacer disposed between the first and second electrodes, and a monovalent ion selective layer disposed on at least one of the first and second electrodes. A supercapacitor desalination device and a method for desalination of a liquid are further presented.
Abstract:
A curable composition comprising: (i) 2.5 to 50 wt % crosslinker comprising at least two acrylamide groups; (ii) 20 to 65 wt % curable ionic compound comprising an ethylenically unsaturated group and an anionic group; (iii) 15 to 45 wt % solvent; and (iv) 0 to 10 wt % of free radical initiator; wherein the molar ratio of (i):(ii) is 0.1 to 1.5. The compositions are useful for preparing ion exchange membranes.
Abstract:
An electrochemical separation system may be modular and may include at least a first modular unit and a second modular unit. Each modular unit may include a cell stack and a frame. The frame may include a manifold system. A flow distribution system in the frame may enhance current efficiency. Spacers positioned between modular units may also enhance current efficiency of the system.
Abstract:
Phase control apparatus and methods for antenna arrays are disclosed. Phase shifts at respective antenna element subunits along a first axis of an antenna array are controlled by applying a variable control voltage across a voltage divider to divide the variable control voltage into multiple voltages that are used to generate phase shift control voltages for phase shift elements corresponding to the respective antenna element subunits. The antenna array may be steered along the first axis by controlling the variable control voltage applied across the voltage divider. A second voltage divider could be used to extend phase control and steering to two dimensions.
Abstract:
A curable composition comprising: (i) 2.5 to 50 wt % crosslinker comprising at least two acrylamide groups; (ii) 12 to 65 wt % curable ionic compound comprising an ethylenically unsaturated group and a cationic group; (iii) 10 to 70 wt % solvent; and (iv) 0 to 10 wt % of free radical initiator; and (v) non-curable salt; wherein the molar ratio of (i):(ii) is >0.10. The compositions are useful for preparing ion exchange membranes.