Abstract:
A liquid fuel composition comprising a base fuel suitable for use in an internal combustion engine; one or more organic UV filter compounds; and one or more ester co-additive compounds provides improvements in terms of stability properties in an additive blend containing said one or more organic UV filter compounds and said one or more ester co-additive compounds, particularly at low temperatures, such as temperatures of 5° C. or lower.
Abstract:
This invention refers to the production and use of a petroleum asphaltene handler additive compound which when applied in heavy oil, causes asphaltenes to remain in suspension or dissolve, producing a viscosity reduction effect that prevents formation of precipitation of asphaltenic conglomerates in oil wells and storage tanks, as well as prevents pipelines from being obstructed.The molecular binding of the components of this new additive compound is such that the final liquid may be miscible in all types of oil. There are currently solubility models using different methods for handling asphaltenes; some of which use solvents which generate other problems to the physical and chemical stability of the oil, while others, as for example with the use of steam or heat, provide a temporary solution because the oil ultimately returns to the initial conditions thereof owing to the use of reversible processes.
Abstract:
The invention relates to butanol compositions for fuel blending and fuel blends comprising such compositions. The compositions and fuel blends of the invention have desirable performance characteristics and can serve as alternatives to ethanol-containing fuel blends. The invention also relates to methods for producing such butanol compositions and fuel blends.
Abstract:
Gemini surfactants of bis-N-alkyl polyether, bis-N-alkenyl polyether, bis-N-cycloalkyl polyether, bis-N-aryl polyether bis-beta or alpha-amino acids or their salts, are produced for use as multifunctional corrosion inhibitors, which protect and prevent corrosion of ferrous metals exposed to acidic, basic and neutral liquids when transporting or storing crude oil and liquid fuels. The surfactants are also used to inhibit corrosion of equipment and pipes used in cooling systems in petroleum and petrochemical equipment. The Gemini surfactants have the structural formula:
Abstract:
An additive mixture for fuels including a) at least one N-formal, b) at least one antioxidant and c) at least one corrosion inhibitor. The additive mixture ensures that the additized fuels and lubricants have biocidal and corrosion-inhibiting additization, especially when they include proportions of renewable raw materials, such as biodiesel, and when they are in contact with copper-containing surfaces.
Abstract:
The present invention is directed toward compositions suitable for use as dielectric fluids, lubricant fluids and biodiesel fluids. Compositions described herein are obtained from a saturated, unsaturated or combinations of both monol, diol, triol or polyol acyl ester based fluid and/or a non-ester based fluid and 2,4,6-tris(di-C1-C6-alkylaminomethyl)phenol and/or the carboxylic acid salt of 2,4,6-tris(di-C1-C6-alkylaminomethyl)phenol. These compositions demonstrate improved oxidative stability and/or hydrolytic stability at higher use temperatures.
Abstract:
Processes are disclosed that achieve a high conversion of lignin to aromatic hydrocarbons, and that may be carried out without the addition of a base. Depolymerization and deoxygenation, the desired lignin convention steps to yield aromatic hydrocarbons, are carried by contacting a mixture of lignin and a solvent (e.g., a lignin slurry) with hydrogen in the presence of a catalyst. A preferred solvent is a hydrogen transfer solvent such as a single-ring or fused-ring aromatic compound that beneficially facilitates depolymerization and hinders coke formation. These advantages result in favorable overall process economics for obtaining fuel components and/or chemicals from renewable sources.
Abstract:
The present invention provides hybrid diesel fuels and methods for manufacturing hybrid diesel fuels. In embodiments, fuel compositions comprise at least one petrochemical fuel, at least one biosynthetic oil and at least one stabilizer mixture. The percentage by volume of the petrochemical fuel can be greater than 0% and less than 100%, and the percentage by volume of the stabilizer mixture can be between about 0.001% and about 0.5%.
Abstract:
This invention relates to corrosion inhibitor additive combinations giving long acting performance in oxygenated gasoline blends comprising either low carbon number (
Abstract:
This invention relates to a method for refining vegetable oils, in particular cottonseed oil or a possible mixture of it with others, as substitute of diesel fuel remarkable in that a sequence of treatment steps to be performed on crude vegetable oil, including: a) a pre-treatment thereof consisting of the removal of oil insoluble impurities from the crude oil, b) removal of oil soluble impurities therefrom, c) a free acid neutralization thereof, and d) a drying, bleaching and filtration thereof. This invention also relates to an Additive of organic basis, containing ether, ketone, toluene, hexane, turpentine, alcohols in specific concentrations.