Abstract:
The invention relates to dispersions comprising I) at least one polymer that is effective for mineral oils as a cold extrusion improver and is soluble in oil, II) at least one organic solvent that cannot be mixed with water, III) water, IV) at least one alkanolamine salt of a polycyclic carboxylic acid as a dispersing agent, and V) possibly at least one organic solvent that can be mixed with water.
Abstract:
Corrosive amine salts in hydrocarbon streams such as desalted crude oil streams can be prevented or avoided by adding certain amine scavenging chemicals to the streams to remove the amines therefrom. Suitable amine scavengers include, but are not necessarily limited to, carboxylic anhydrides and copolymers of carboxylic anhydrides, aromatic anhydrides, isocyanates, polyisocyanates, and epoxides. The non-corrosive reaction products of the amines and/or ammonia with these scavengers are preferably oil-soluble, non-basic and thermally stable. The amine scavengers bind up and react with the amines and/or ammonia to keep them from reacting with materials such as acids (e.g. HCl) to form corrosive amine salts.
Abstract:
Corrosive amine salts in hydrocarbon streams such as desalted crude oil streams can be prevented or avoided by adding certain amine scavenging chemicals to the streams to remove the amines therefrom. Suitable amine scavengers include, but are not necessarily limited to, carboxylic anhydrides and copolymers of carboxylic anhydrides, aromatic anhydrides, isocyanates, polyisocyanates, and epoxides. The non-corrosive reaction products of the amines and/or ammonia with these scavengers are preferably oil-soluble, non-basic and thermally stable. The amine scavengers bind up and react with the amines and/or ammonia to keep them from reacting with materials such as acids (e.g. HCl) to form corrosive amine salts.
Abstract:
The invention relates to a method for manufacture of hydrocarbon fuels and oxygenated hydrocarbon fuels such as alkyl substituted tetrahydrofurans such as 2,5-dimethyltetrahydrofuran, 2-methyltetrahydrofuran, 5-methylfurfural and mixtures thereof. The method generally entails forming a mixture of reactants that includes carbonaceous material, water, a metal catalyst and an acid reacting that mixture in the presence of hydrogen. The reaction is performed at a temperature and for a time sufficient to produce a furan type hydrocarbon fuel. The process may be adapted to provide continuous manufacture of hydrocarbon fuels such as a furan type fuel.
Abstract:
A process and system for separating bio-gasoline, bio-diesel and bio-fuel oil fractions from a bio-oil, and for producing a renewable gasoline including at least in part the bio-gasoline fraction, is provided. The process comprises separating bio-oil into a bio-gasoline fraction and a heavy fraction based on their boiling points. At least a portion of the bio-gasoline fraction is directly blended with a petroleum-derived gasoline, without any prior hydrotreatment, to thereby provide a renewable gasoline composition.
Abstract:
A gasoline composition containing in the range of from 0.1 to 30 wt % alkylfurfuryl ether with an alkyl group having 1 to 4 carbon atoms is provided. The gasoline composition is prepared by blending the alkylfurfuryl ether in a gasoline base fuel. The alkylfurfuryl ether is prepared by reacting an alkyl alcohol having in the range of 1 to 4 carbon atoms is reacted with furfuryl alcohol by contacting a liquid phase comprising the alkyl alcohol and furfuryl alcohol with an acidic zeolite catalyst at a temperature in the range of from 50 to 200° C.
Abstract:
The present invention relates to using a marker in a functional fluid, which survives the use of the functional fluid in an application, with a reagent solution to identify the functional fluid rapidly either before, during or after the functional fluid's use and which is a suitable method for identifying a functional fluid in the field, and which may employ the use of test wipe, or medium, that contains the reagent solution.
Abstract:
The invention provides a water blended fuel composition made by combining (i) a normally liquid hydrocarbon fuel; (ii) water; (iii) a nitrogen-free surfactant; and an acid having a pKa of up to about 6.
Abstract:
Disclosed is composition useful for reducing the concentration of mercaptans in hydrocarbons comprising: (A) a first diazo component and (B) a second component comprising a nucleophilic acceptor. The composition can be added to hydrocarbons such as fuel oil to reduce mercaptans without increasing turbidity or color. Triethylene diamine and 1,2-epoxyhexadecane are disclosed to be exemplary diazo and nucleophilic acceptor components.
Abstract:
This invention describes the preparation of fatty acid esters of glycerol formal either by a triglyceride transesterification process or, alternatively, by an esterification process of fatty acids previously obtained from the hydrolysis of triglycerides (fat splitting), with glycerol formal in the presence of an acid or basic catalyst. Also the invention describes the use of these fatty acid esters of glycerol formal prepared by said process as biofuel. In an embodiment, such biofuel is used in the preparation of other biofuels by its mixture with a product selected from a group formed by: glycerol formal, biodiesel, petrol-derived diesel, and mixtures thereof. The biofuels thus obtained are characterised to allow the complete incorporation of the glycerol obtained in the current biodiesel production process in a biodiesel fuel.