Abstract:
The testing of various chemicals has yielded new chemicals and chemical mixtures for the use of removing carbon deposits from the internal combustion engine. Some of these chemicals and chemical mixtures have proven to work better across many different carbon types than other chemicals that were tested. These chemical terpenes are typically produced from plants. One standard terpene mixture is known as turpentine. The chemical turpentine and chemicals found in turpentine have been determined, through our research and testing, to be extremely effective at removing the carbon that is produced within the internal combustion engine.
Abstract:
The invention provides fuel mixtures containing biodiesel oil, glycerol, glycerol soluble compounds, surfactants and additives. The fuel mixtures are uniform, remain suspended in solution, and are resistant to phase separation. Upon combustion, the mixtures generate reduced CO, CO2, SOx, NOx and particulate matter emissions compared to petroleum fuels and offer improved engine performance over petroleum and water mixtures.
Abstract:
A method of introducing additives to an air intake system of an engine in order to overcome one or more of the various problems created by formulation of additives in fuels. The method controls at least one of the amount, aerosol particle size and timing of introduction of additives based on information relevant to operation of the engine. The introduced additives form an air-additive mixture and are carried by the airflow in the air-intake system to the combustion chamber of the engine. Another aspect of the invention is an additive introduction system that includes one or more containers for additives, a control system for determining at least one of the amount, aerosol particle size and timing of introduction of the additives, and a device to introduce the additives into the air intake system under the control of the control system.
Abstract:
A fuel for compression-ignition engines is described, which contains mono oxymethylene dimethyl ether and has a cetane number of ≧51. This fuel for compression-ignition engines advantageously contains oxygenates of the n-polyoxaalkane type and/or di-tert-butyl peroxide. Up to about 20% by weight of the mono oxymethylene dimethyl ether can be replaced by dimethyl ether.
Abstract:
The invention provides fuel mixtures containing biodiesel oil, glycerol, glycerol soluble compounds, surfactants and additives. The fuel mixtures are uniform, remain suspended in solution, and are resistant to phase separation. Upon combustion, the mixtures generate reduced CO, CO2, SOx, NOx and particulate matter emissions compared to petroleum fuels and offer improved engine performance over petroleum and water mixtures.
Abstract:
A fuel additive composition includes: a) a reverse-micellar composition having an aqueous disperse phase that includes cerium dioxide nanoparticles in a continuous phase that includes a hydrocarbon liquid, a surfactant, and optionally a co-surfactant and b) a reverse micellar composition having an aqueous disperse phase that includes a cetane improver effective for improving engine power during fuel combustion. A method of making a cerium-containing fuel additive includes the step of: a) providing a mixture of a nonpolar solvent, a surfactant, and a co-surfactant; and b) combining the mixture with an aqueous suspension of stabilized cerium dioxide nanoparticles.
Abstract:
Exhaust emissions resulting from the combustion of hydrocarbon fuels in compression ignition engines may be reduced using a homopolymer that may be polyisobutylene, polypropylene, and/or hyperbranched polyalpha-olefins. The homopolymer may have a molecular weight of from about 1600 to about 275,000. Optionally, an alkyl nitrate such as 2-ethylhexylnitrate (2EHN), and/or a peroxide, such as hydrogen peroxide, may also be used together with the homopolymer. Both NOx and particulate matter emissions (PM) may be reduced using ppm quantities of the additive compositions; alternatively, NOx emissions may be lowered or reduced while PM emissions do not substantially increase.
Abstract:
This invention relates to a novel hydrocarbon fuel and a method of manufacturing the said hydrocarbon fuel from a novel biomass source. The hydrocarbon fuel has the following ingredients in the proportion herein defined: a. Limonene 2% to 60% b. Benzoyl Peroxide 1% to 5% c. Iso Propyl Alcohol 1% to 5% d. Glycerine 5% to 25% e. Tetra Hydrofuran 10% to 40% f. Tertiary Butyl Alcohol 10% to 20% g. Ethyl Formate 5% to 30% h. Methyl Alcohol 5% to 25% i. Cyclopentane 2% to 10% j. Ethyl Alcohol 22% to 40%.
Abstract:
The cetane number of middle distillate fuels may be increased using an additive composition including a polymer that may be a homopolymer or copolymer of olefins, and the like, where the polymer has a weight average molecular weight ranging from about 200,000 to about 5,000,000. The additive composition also includes a free radical initiator component, which may be an alkyl nitrate such as 2-ethylhexylnitrate (2-EHN), and/or a peroxide, such as t-butyl peroxide. In one non-limiting embodiment the amount of polymer in the additive composition is greater than the free radical initiator component. A solvent is also present, which the solvent may include alcohol, an alkyl substituted phenol and/or a heavy aromatic distillate.
Abstract:
The present invention relates to a process for reducing sulfur content in petroleum fuel, such as diesel fuel, and raising the Cetane Number to a value above 50.