Abstract:
A method of improving the combustion of a fuel by adding a catalyst or combustion enhancer at an extremely low concentration, preferably in the range of 1 part catalyst per 200 million parts fuel to 1 part catalyst per 6 trillion parts fuel. The catalyst or combustion enhancer may be selected from a wide range of soluble compounds. The method may comprise the steps of an initial mixing of the catalyst or enhancer with a suitable solvent and then subsequent dilution steps using solvents or fuel. Suitable solvents include water, MTBE, methylketone, methyisobutylketone, butanol, isopropyl alcohol and other hydrophilic/oleophilic compounds.
Abstract:
A method of improving the combustion of a fuel by adding a catalyst or combustion enhancer at an extremely low concentration, preferably in the range of 1 part catalyst per 200 million parts fuel to 1 part catalyst per 6 trillion parts fuel. The catalyst or combustion enhancer may be selected from a wide range of soluble compounds. The method may comprise the steps of an initial mixing of the catalyst or enhancer with a suitable solvent and then subsequent dilution steps using solvents or fuel. Suitable solvents include water, MTBE, methylketone, methyisobutylketone, butanol, isopropyl alcohol and other hydrophilic/oleophilic compounds.
Abstract:
The frictional pressure drop, or drag, of hydrocarbon fluids flowing through pipelines of various lengths is preferentially lowered by dissolving therein polymeric drag reducer suspensions exhibiting bi- or multimodal particle size distributions. Drag reducers having larger particle sizes dissolve more slowly than drag reducers having smaller particle sizes, and vice versa. By using at least bi-modal particle size distributions, the drag reduction effect may be distributed more uniformly over the length of the pipeline where smaller sized particles dissolve sooner after injection (upstream in the pipeline), and larger sized particles dissolve later (further along the pipeline). Drag reducer suspensions with bi- or multimodal particle size distributions may be made by suspension polymerization.
Abstract:
The present invention relates to a method of using a block copolymer comprising monomeric units of 1,4-butadiene and at least one other comonomer addition products to lower the gel point of crude petroleum. The block copolymer comprises at least 10% by weight of at least one crystallizable block and at least one low crystallinity block.
Abstract:
Block and random straight chain and star-branched liquid copolymers of two different conjugated dienes, the residual ethylenic unsaturation of the polymerized units of one of which, e.g. isoprene, is less readily hydrogenated than that of the other diene, e.g., butadiene. In the case of block copolymers, the terminal blocks of a straight chain copolymer or the blocks of the free ends of the branches of a star-branched copolymer are composed of the less readily hydrogenated diene polymer while the more readily hydrogenated diene polymer is in the form of central blocks of a straight chain copolymer or interior blocks of the branches of a star-branched copolymer. These copolymers may be selectively hydrogenated so that substantially all of the residual ethylenic unsaturation of the more readily hydrogenated polymerized diene units are hydrogenated while enough residual ethylenic unsaturation of the less readily hydrogenated polymerized diene units remains unhydrogenated to provide sufficient sites for subsequent vulcanization or chemical modification. The combination of elastomeric properties and oxidative stability possessed by the polymers of this invention makes them suitable for many and uses such as sealants, caulks and adhesives.
Abstract:
A particulate, free-flowing and rapid dissolving polymer composition is prepared by comminuting a high molecular weight thermoplastic or viscoelastic polymer at a temperature below its glass transition temperature while maintaining the polymer in an inert environment. A finely divided, solid coating agent is mingled with the comminuted polymer while maintaining the polymer particles in a cold and inert atmosphere. The particles of coating agent form a protective shell around each polymer particle by tumble mixing the components while raising the temperature of the mixture. The polymer composition finds use as a drag reducing agent; as an anti-misting agent; to enhance the efficiency of oil skimming processes and devices; and for the preparation of polymer solutions for other uses.
Abstract:
A method for separating liquids, particularly hydrocarbons from water, whereby a small amount of a high molecular weight polymer is dissolved in the hydrocarbon to render it viscoelastic. A hydrocarbon layer is then mechanically removed from the water in a manner which causes rapid stretching of the hydrocarbon with attendant development of elastic properties in the hydrocarbon layer. The polymer may be applied to the surface of the hydrocarbon as droplets of a relatively concentrated polymer solution or as solid particulates having a polymer core covered by a powdered solid material which is non-reactive toward the polymer.
Abstract:
Oil soluble combinations of (A) ethylene polymer or copolymer, (B) a second polymer having alkyl side chains of 6 to 30 carbon atoms, and derived from carboxylic acid esters and/or olefins, and (C) nitrogen compounds, such as amides, amine salts and ammonium salts, of carboxylic acids or anhydrides, are useful in improving the cold flow properties of distillate hydrocarbon fuel oils.
Abstract:
Oil soluble ethylene polymers or copolymers having a M.sub.n less than about 4000 in combination with an oil soluble polyester material such as a homopolymer or copolymer comprising, at least 10% by weight C.sub.4 to C.sub.16 substantially straight-chain alkyl esters of acrylic or methacrylic acid, are useful in improving the cold flow properties of distillate hydrocarbon oils.
Abstract:
Oil soluble ethylene-vinyl ester copolymers having a M.sub.n less than about 4000 in combination with an oil soluble polyester material, such as a homopolymer or copolymer, comprising at least 10% by weight C.sub.14 to C.sub.16 substantially straight-chain alkyl esters of acrylic or methacrylic acid, are useful in improving the cold flow properties of distillate hydrocarbon oils.