Abstract:
Gemini surfactants of bis-N-alkyl polyether, bis-N-alkenyl polyether, bis-N-cycloalkyl polyether, bis-N-aryl polyether bis-beta or alpha-amino acids or their salts, are produced for use as multifunctional corrosion inhibitors, which protect and prevent corrosion of ferrous metals exposed to acidic, basic and neutral liquids when transporting or storing crude oil and liquid fuels. The surfactants are also used to inhibit corrosion of equipment and pipes used in cooling systems in petroleum and petrochemical equipment. The Gemini surfactants have the structural formula:
Abstract:
High octane unleaded aviation fuel compositions having a CHN content of at least 97.2 wt %, less than 2.8 wt % of oxygen content, a T10 of at most 75° C., T40 of at least 75° C., a T50 of at most 105° C., a T90 of at most 135° C., a final boiling point of less than 210° C., an adjusted heat of combustion of at least 43.5 MJ/kg, a vapor pressure in the range of 38 to 49 kPa is provided.
Abstract:
An additive mixture for fuels including a) at least one N-formal, b) at least one antioxidant and c) at least one corrosion inhibitor. The additive mixture ensures that the additized fuels and lubricants have biocidal and corrosion-inhibiting additization, especially when they include proportions of renewable raw materials, such as biodiesel, and when they are in contact with copper-containing surfaces.
Abstract:
Additive composition for use in a fuel or lubricant formulation, comprising an active substance in an inclusion complex with a modified cyclodextrin of formula (I): wherein n is an integer from 6 to 20, and R1, R2 and R3 are each independently selected from hydrogen, optionally substituted alkyl, optionally substituted aryl and carbonyl, provided that R1, R2 and R3 are not all hydrogen. Also provided is a fuel or lubricant formulation comprising the additive composition, a premix for use in preparing the additive composition, and the use of a modified cyclodextrin (I) as a vehicle for an active substance in an additive composition or in a fuel or lubricant formulation.
Abstract:
An unleaded aviation fuel blend. The fuel blend is provided by blending an unleaded aviation gasoline base fuel which may include iso-octane and iso-pentane, and an effective amount of a selected alkyl benzene to improve the functional engine performance to avoid harmful detonation sufficient to meet or exceed selected standards for detonation performance requirements in full scale aircraft piston spark ignition engines designed for use with Grade 100LL avgas. Advantageous alkylated benzenes include those having a meta-ring position between alkyl groups. Alkyl groups may be provided at least in part by methyl groups. In an embodiment, the alkyl benzene may include 1,3-dimethylbenzene. In an embodiment, two or more alkylated benzenes may be provided. In an embodiment, 1,3,5-trimethylbenzene may be provided. Suitable alkylated benzenes may include a mixture of xylene isomers. Selected aromatic amines, such as m-toluidine, may also be added to increase motor octane number.
Abstract:
Use of a reaction product of saturated or unsaturated aliphatic mono- or polycarboxylic acids with aliphatic polyamines for improving or boosting the separation of water from fuel oils which comprise additives with detergent action. A Fuel additive concentrate comprising the said reaction product, certain additives with detergent action and optionally dehazers, cetane number improvers and solvents or diluents.
Abstract:
The present invention provides hybrid diesel fuels and methods for manufacturing hybrid diesel fuels. In embodiments, fuel compositions comprise at least one petrochemical fuel, at least one biosynthetic oil and at least one stabilizer mixture. The percentage by volume of the petrochemical fuel can be greater than 0% and less than 100%, and the percentage by volume of the stabilizer mixture can be between about 0.001% and about 0.5%.
Abstract:
A high octane non-leaded gasoline meeting ASTM D910 LL standard is provided that includes a base gasoline fuel having a minimum MON of 96.5 and meeting the ASTM D910 standard. An octane-boosting component is mixed with the base gasoline fuel that raises the MON above 99.6 and the blended fuel complies with ASTM D910. The octane-boosting component is selected from a group including an additive, TEL only and a TEL containing gasoline.
Abstract:
The present invention discloses a fuel composition useful for internal combustion engine having an Octane Number from 95 to 105 comprising: (a) an unleaded and devoid of organometal compounds base gasoline having an Octane Number (RON) from 90.1 to 103: (b) one or more aromatic amines selected in the group consisting of: (b1) 2,4-dialkylaniline, wherein the alkyl groups in position 2 and 4, independently one from the other, are selected in the group consisting of methyl, ethyl, n-propyl, iso-propyl, preferably both the alkyl groups in position 2 and 4 are methyl; (b2) N-Nitrosodiphenylamine. The process for preparing the above composition is also described along with the use of the aromatic amines selected between (b1) and (b2) and related mixtures for increasing the Octane Number.
Abstract:
An additive mixture for fuels including a) at least one N-formal, b) at least one antioxidant and c) at least one corrosion inhibitor. The additive mixture ensures that the additized fuels and lubricants have biocidal and corrosion-inhibiting additization, especially when they include proportions of renewable raw materials, such as biodiesel, and when they are in contact with copper-containing surfaces.