Abstract:
A method and apparatus for actively aligning an optical device are described. An apparatus includes an optical device. The optical device includes a supporting surface, a light source mounted to the supporting surface, a lens mount configured to hold a lens, a lens holder configured to hold the lens mount, wherein the lens mount is configured to be mounted to the supporting surface. A light detector is configured to determine a light intensity of a light beam through the lens, the light intensity indicating the alignment of the lens. An alignment device is to move the lens until the light intensity indicates that the lens is aligned, and a curing light is to cure adhesive layers between the lens and the lens mount, the lens mount and the lens holder, and the lens holder and the supporting surface.
Abstract:
A sunlight lens portion includes a low elevation angle surface for capturing light at low elevation angles, an opposing surface which is adjacent to the low elevation angle surface and which faces a sunlight detection element, and a high elevation angle surface for capturing light at high elevation angles. Further, the sunlight lens portion includes a reflection surface adjacent to the high elevation angle surface and the opposing surface. Accordingly, a portion of sunlight entering the sunlight lens portion is reflected by the reflection surface and guided to the sunlight detection element, therefore it is possible to broaden a range of peak sunlight amount detected by the sunlight detection element. Due to this, it is possible to reduce an effect of the angle of inclination of the windshield on the elevation angle characteristic of the sunlight sensor.
Abstract:
This invention is directed to reliably condensing weak light by a sensor arranged at a position spaced apart from a processing position. The optical processing head includes a light guide that guides light for irradiating a processing position. The optical processing head further includes a light transmitter that has one end arranged near the distal end of the light guide and the other end connected to a photodetector, condenses reflected light traveling from the processing position, and transmits it to the photodetector. The optical processing head includes at least one light transmitter as its feature.
Abstract:
The present invention relates to a spectral detection device (100) for detecting spectral components of received light, wherein the spectral detection device (100) comprises a filtering structure (110) arranged to filter the received light and output light with a wavelength within a predetermined wavelength range; and a light sensor (120) arranged to detect the light output by the filtering structure (110), wherein the filtering structure (110) is variable to allow a variation of the predetermined wavelength range over time.The arrangement enables a compact spectral detection device that may be provided at a low cost.
Abstract:
Methods and apparatus (100) for profiling a beam of a light emitting semiconductor device. The apparatus comprises a light emitting semiconductor device (102) comprising an active region (108) formed on a substrate (104) and configured to generate light when a suitable electrical current is applied to contacts on an upper surface of the device and a light emitting surface (110) defined by a lower surface of the substrate opposite the contacts. The apparatus further comprises a transmission medium (112) comprising a first surface (114) in contact with at least part of the light emitting surface of the semiconductor device and a diffusion surface (116), opposite the first surface, and configured to diffuse light emitted from the micro-LED and transmitted through the transmission medium.
Abstract:
An apparatus comprises a first light sensor configured with a first field of view; and a second light sensor configured with a second, narrower field of view contained within the first field of view. The first and second light sensors may be arranged to detect light reflected from an illuminated surface, wherein the first and second field of view encompass light from an electric lighting device reflected from said surface and additional light reflected from said surface, e.g. natural light; but the second light sensor is concentrated on a region on said surface so as to exclude glare from objects outside said region, whereas the first field of view extends beyond said region. An illumination level of the environment in which the apparatus is installed may be adjusted to compensate for a change in the additional light based on information distinguishing between the two sensors.
Abstract:
A sensor is disclosed that can include a light component in support of a first light source operable to direct a first beam of light, and a second light source operable to direct a second beam of light. The sensor can also include an imaging device positioned proximate the light component and operable to directly receive the first beam of light and the second beam of light, and convert these into electric signals. The imaging device and the light component can be movable relative to one another. The sensor can further include a light location module configured to receive the electric signals and determine locations of the first beam of light and the second. beam of light on the imaging device. In addition, the sensor can include a position. module configured to determine a relative position of the imaging device and the light component based on the locations of the first beam of light and the second beam of light on the imaging device.
Abstract:
A forward looking light sensor is described herein. The sensor includes a first light blocking material; a second light blocking material; and a light sensor with a first surface and a second surface. The first light blocking material is disposed on the first surface of the light sensor and the second light blocking material is disposed on the first surface of the light sensor, and the first light blocking material and the second light blocking forming an aperture.
Abstract:
A dynamic signal to noise ratio tracking system enables detection and tracking of ride vehicles within the field of view of the tracking system. The tracking system may include an emitter configured to emit electromagnetic radiation within an area, a detector configured to detect electromagnetic radiation reflected back from within the area, and a control unit configured to evaluate signals from the detector and control the ride vehicles or other equipment as a result of this evaluation.
Abstract:
The present invention relates to a light detector arranged to detect coded light emitted from at least one light source. The light detector (100) includes a photo detector (102), which is arranged to detect the coded light. The light detector further has an image sensor (104), and a screen (106), wherein a field of view of the photo detector is within the field of view of the image sensor. The light detector is arranged to display an image captured by the image sensor and comprising a light source, the coded light of which is detected by the photo detector, on the screen. The present invention also relates to a method of detecting light emitted from at least one light source.