Abstract:
An optical detecting apparatus, which comprises: a detecting surface; a first light source, for providing light parallel to the detecting surface; an image sensor, for detecting an object close to the detecting surface, to generate object image data; and an object location determining apparatus, for computing location information of the object according to the object image.
Abstract:
Traffic monitors based on non-imaging radiation detectors are described. A traffic monitor includes a non-imaging radiation detector that senses spatially patterned radiation emanating from objects moving in a traffic pattern. The detector generates a time varying output signal based on the sensed radiation. Signal processing circuitry is used to analyze the time varying output signal using time domain analysis to provide the traffic information.
Abstract:
A method and apparatus are provided for processing light from a light source. The method includes the steps of measuring a predetermined set of characteristics of the light source and detecting flicker when the predetermined set of characteristics exceed a corresponding flicker fusion threshold value.
Abstract:
Systems and methods are provided for detecting ambient light with reduced sensitivity to infrared sources. An electronic device may include an infrared sensor, an ambient light sensor, a decoder, and a processor. The infrared sensor may detect an intensity of infrared light. The ambient light sensor may be configured to detect incident light and to generate an electronic signal indicative of an intensity of visible light. The decoder may be configured to receive the intensity of infrared light and to generate an intensity of decoded infrared light. The processor, which may be coupled to the decoder and the ambient light sensor, may be configured to substitute an alternate electronic signal for the electronic signal if the intensity of infrared light exceeds a threshold amount.
Abstract:
Disclosed is an inspecting equipment for inspecting a light emission characteristic of a display screen includes: a carrying device provided for carrying the display screen, a cover device and a data analyzing device. The cover device has a detecting surface provided with a plurality of luminance detectors, and covers an emitting surface of the display screen to form a darkroom between the cover device and the detecting surface. A plurality of corresponding luminance information is generated by the luminance detectors provided for detecting a plurality of measuring zones of the emitting surface. The data analyzing device receives the luminance information and analyzes the light emission characteristic of the display screen according to the luminance information. And, it is thus able to rapidly inspect the light emission characteristic of the display screen during manufacture process, and is easy to be applied to a present producing line.
Abstract:
A detection apparatus comprising a chuck, a probe device, a light-sensing device and a light-concentrating unit is disclosed. The chuck bears light-emitting diode chips. The probe device includes two probes and a power supply. The end point of the probes respectively electrically connects with one of the light-emitting diode chips and the power supply to make the light-emitting diode chip emits a plurality of light beams. The light-sensing device is disposed on one side of a light-emitting surface of the light-emitting diode chip so as to receive the light beams emitted by the light-emitting diode chip. The light-concentrating unit is disposed between the light-emitting diode chip and the light-sensing device to concentrate the light beams emitted by the light-emitting diode chip.
Abstract:
An analyzer of the spatial intensity distribution of a laser beam focused or transmitted by an optical fiber comprises: a shaping lens; a device for taking a partial sample of the beam; a heat sink; a photodiode; an imaging lens to form images of the plane on an image sensor; a motorization of the shaping lens to translate along the optical axis; a motorization of the imaging lens to translate in a plane perpendicular to the optical axis; a motorization of the image sensor to translate along the optical axis; an electronic unit controlling each motorization; an electronic unit synchronizing the image sensor, connected to the photodiode to synchronize image capture with the laser pulses or in the pulses; an electronic unit adjusting the aperture and/or gain of the image sensor; and a software interface parameterizing and piloting the electronic control units, equipped with an image processing unit.
Abstract:
A detection apparatus comprising a chuck, a probe device, a light-sensing device and a light-concentrating unit is disclosed. The chuck bears light-emitting diode chips. The probe device includes two probes and a power supply. The end point of the probes respectively electrically connects with one of the light-emitting diode chips and the power supply to make the light-emitting diode chip emits a plurality of light beams. The light-sensing device is disposed on one side of a light-emitting surface of the light-emitting diode chip so as to receive the light beams emitted by the light-emitting diode chip. The light-concentrating unit is disposed between the light-emitting diode chip and the light-sensing device to concentrate the light beams emitted by the light-emitting diode chip.
Abstract:
An optical property evaluation apparatus includes: a light conversion filter converting light emitted from an LED chip or a bare LED package, which is to be evaluated, into a different wavelength of light, and emitting a specific color of light; and an optical property measurement unit receiving the specific color of light emitted from the light conversion filter and measuring the optical properties of the received light.
Abstract:
Light sensors (1) are used in lighting applications, especially in combination with LEDs, to control and/or adapt the color point of light sources. Costs and/or performance of the light sensor (1) are essential in order to guarantee cost-effective light sources with reproducible color points. This aim is achieved by a light sensor (1) comprising a light diffuser (10), an optical non-transparent housing (11) having at least one window (12), at least one interference filter (13) and at least two photo sensors (14). The light diffuser (10) is arranged in such a way that light from outside the optical non-transparent housing (11) has to pass the light diffuser (10) so as to enter the interior of the optical non-transparent housing (11) via the window (12). The interference filter (13) and the at least two photo sensors (14) are arranged in the interior of the optical non-transparent housing (11), which interference filter (13) is arranged between the window (12) and the at least two photo sensors (14).