Abstract:
The invention relates to a multiple channel readout circuit optimized for a cryogenically operated IR sensor head. The circuit is applicable to the individual channel preamplifiers of a charge injection device (CID) IR sensor. Since the thermal leakage must be minimized, the voltages on the principal current supply path to the individual preamplifiers will vary when a strong signal is present on any channel. Crosstalk is avoided by using a four transistor cascode preamplifier circuit having a source follower output, in which the gate of the transistor, which acts as a load to the two cascoded transistors, is isolated from the drain of the load transistor, connected to a gate load node common to the other channels, and the node connected via a single connection of high thermal impedance to a terminal external to the cryogenic environment, at which filtering may be provided as needed.
Abstract:
An infrared imager includes an array of imager elements. Infrared radiation is focussed onto the array by a lens assembly including a plurality of lens elements. The imager array and the lens are within a cold box which includes an infrared-transparent window. For low noise, a spectrum-limiting filter is also located within the cold box, between the lens assembly and the window, at or within the pupil relief distance of the lens assembly. The pupil relief distance is extended by the use of at least one aspheric surface for one of the lens elements of the lens assembly. The mounting structure of the filter is the aperture stop for the infrared imager. The field of view may be reduced, if desired, without significant effect on the noise performance by use of a telescope including a second lens assembly optically identical to the first lens assembly, operated in conjunction with a confocal large-diameter lens assembly.
Abstract:
The present invention refers to a device (112) for monitoring an emission temperature of at least one radiation emitting element (114), a heating system (110) for heating at the least one radiation emitting element (114) to emit thermal radiation at an emission temperature, a method for monitoring an emission temperature of at least one radiation emitting element (114) and method for heating the at least one radiation emitting element (114) to emit thermal radiation at an emission temperature. Herein, the device (112) for monitoring an emission temperature of at least one radiation emitting element (114) comprises—at least one light source (125), wherein the light source is configured to emit optical radiation at least partially towards the at least one radiation emitting element (114); —at least one radiation sensitive element (126), wherein the at least one radiation sensitive element (126) has at least one sensor region (128), wherein the at least one sensor region (128) comprises at least one photosensitive material selected from at least one photoconductive material, wherein the at least one sensor region (128) is designated for generating at least one sensor signal depending on an intensity of the thermal radiation emitted by the at least one radiation emitting element (114) and received by the sensor region (128) within at least one wavelength range, wherein the sensor region (128) is further designated for generating at least one further sensor signal depending on an intensity of the optical radiation emitted by the at least one light source (125) and received by the sensor region (128) within at least one further wavelength range, wherein the at least one radiation sensitive element (126) is arranged in a manner that the thermal radiation travels through at least one transition material (116) prior to being received by the at least one radiation sensitive element (126), wherein at least one of the at least one light source (125) and the at least one radiation sensitive element (126) is arranged in a manner that the optical radiation travels through the at least one transition material (116) and impinges the at least one radiation emitting element (114) prior to being received by the at least one radiation sensitive element (126); and—at least one evaluation unit (138), wherein the at least one evaluation unit (138) is configured to determine the emission temperature of the at least one radiation emitting element (114) by using values for the intensity of the thermal radiation and the optical radiation.
Abstract:
An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.
Abstract:
An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.
Abstract:
An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.
Abstract:
A tunable infrared detector employing a vanishing band gap semimetal material which is provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg.sub.1-x Cd.sub.x Te, x
Abstract:
An image sensing device is improved by an optical shield having a multi-aperture to provide high signal to noise ratio. The improved optical shield is provided with a plurality of shield elements forming a grid-like or cellular structure. With such a structure, the solid angle of the field of view for each sensing element becomes almost the same, resulting in the reduction of "shading". The distance between the heat shield and the array can be reduced, resulting in miniaturization of the device. Each sensing element is not shielded individually, so the pitch of the shield elements can be larger than that of the sensing elements, which allows easier and less costly fabrication of the shield.
Abstract:
A wearable safety apparatus includes a housing, a plurality of directional thermal imaging sensors mounted on the housing and facing outwardly away from the housing in a corresponding plurality of different directions towards thermal zones of a heat source. Each sensor detects infrared radiation (IR) intensity and generates an output indicative of a temperature of the detected IR intensity in a respective thermal zone faced by a respective sensor. An interface is mounted on the housing and has a display positioned to be viewable by a user, e.g., a firefighter. A controller processes the outputs generated by the sensors, and displays at a plurality of spaced-apart positions on the display a plurality of positional thermal indicators when the temperature in the respective thermal zone is elevated. The position of each positional thermal indicator corresponds to the thermal zone faced by the respective sensor.
Abstract:
A wearable safety apparatus includes a housing, a plurality of directional thermal imaging sensors mounted on the housing and facing outwardly away from the housing in a corresponding plurality of different directions towards thermal zones of a heat source. Each sensor detects infrared radiation (IR) intensity and generates an output indicative of a temperature of the detected IR intensity in a respective thermal zone faced by a respective sensor. An interface is mounted on the housing and has a display positioned to be viewable by a user, e.g., a firefighter. A controller processes the outputs generated by the sensors, and displays at a plurality of spaced-apart positions on the display a plurality of positional thermal indicators when the temperature in the respective thermal zone is elevated. The position of each positional thermal indicator corresponds to the thermal zone faced by the respective sensor.