Abstract:
A color measuring apparatus includes a measurement assembly which includes at least one illumination assembly for applying substantially parallel illumination light to a measurement spot of a measurement object and a pick-up assembly for capturing the measurement light radiated back from the measurement spot in an observation direction and for converting the same into corresponding electrical signals. The illumination assembly includes at least two illumination subassemblies which illuminate the measurement spot from different illumination sub-directions near a first preset nominal illumination direction, each with preferably parallel illumination light. By the illumination from different illumination sub-directions slightly deviating from the nominal illumination direction, angular errors of the illumination assembly can be compensated for in a simple manner.
Abstract:
A method and apparatus for dating a body sample, such as blood, includes taking at least one spectroscopic measurement of the sample at at least two predetermined positions in the spectrum having spectral characteristics corresponding to at least two predetermined substances present in the sample that have a time varying relationship with each other. A measured relative concentration of each of the predetermined substances is then determined from the measurement, and the measured relative concentrations of the two predetermined substances is compared with a known variation of the relative concentrations of the two predetermined substances over time. A good fit of the measured relative concentrations to the known variation of the relative concentrations is then determined, so as to provide an indication of the age of the sample. Alternatively, instead of measuring the relative concentrations of each of the predetermined substances, the rate of change of the relative concentrations is determined.
Abstract:
An estimation apparatus using reflected light of infrared light reflected on an object, the estimation apparatus including: a single input unit including a first pixel having first spectral sensitivity characteristics in a wavelength range of the infrared light and a second pixel having second spectral sensitivity characteristics different from the first spectral sensitivity characteristics in the wavelength range of the infrared light; and an estimator that estimates at least either one of a color or a material of the object based on a first output value that is an output value of the reflected light from the first pixel and based on a second output value that is an output value of the reflected light from the second pixel.
Abstract:
A system includes multiple light emitting diodes (LEDs) and a light pipe configured to mix light from the LEDs and produce collimated light. The light pipe includes multiple reflective optical devices configured to reflect the collimated light at different angles. The light pipe also includes multiple outlet optical devices configured to selectively control exit of the reflected collimated light from the light pipe. The reflected collimated light has one or more controllable spectral characteristics and/or one or more controllable geometries of illumination.
Abstract:
A densitometer includes a plurality of light-emitting diodes (LEDs) and at least one sensor. The LEDs are activated one at a time in a sequential, repeatable order. Photonic energy from each LED is reflected off an entity and is incident upon the sensor(s). Circuitry samples or acquires signaling from the sensor(s) in accordance with the respective LED activations. Signaling from the densitometer can be used in controlling ink-jetting printers or other apparatus.
Abstract:
Disclosed examples of optical systems having a plurality of light sources with each source having a different spectral outputs may be calibrated by measuring a spectral characteristic of the combined light with two measurements, e.g., one from a colorimeter and one from a sensor included in the system. Accordingly, one can determine a transform function in response to the two measures that models a feedback response of the optical system for each of a plurality of the inputs that would cause the optical system to generate radiant energy within a predetermined range of a spectrum. In order to calibrate the optical system, the transform function is programmed in the optical system to enable the optical system to transform an input to the optical system to a plurality of unique control signals each for controlling a respective light source of the plurality of light sources.
Abstract:
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associate color of a structure is also provided.
Abstract:
The present invention relates generally to a methodology of maintaining correlated color temperature (CCT) of light beam from lighting means by having a processing means to instruct several lighting means groups, wherein each group has different CCT ranges, that are arranged together, to provide light beam of intended CCT, if the CCT of light beam from the lighting means that are reflected back using reflecting means, which are captured and converted to binary data by the sensory means are different from the intended CCT.
Abstract:
In one example, the article includes instructions for illuminating a color patch with a first illumination intensity, capturing a first color measurement of the color patch, adjusting the first illumination intensity to a second illumination intensity based on the first color measurement, illuminating the color patch with the second illumination intensity, and capturing a second color measurement. In one example, the system discloses a light source illuminates a color patch with a first illumination intensity, a color measurement module captures a first color measurement of the color patch, wherein the color measurement module causes the light source to adjust the first illumination intensity to a second illumination intensity based on the first color measurement, and wherein the color measurement module captures a second color measurement of the color patch. In one example, the method discloses blocks for effecting the article and system.
Abstract:
The invention relates to a device for measuring dental shade comprising: —illumination means (24, 40, 42, 44, 48, 50), for successively illuminating at least one part of a tooth (D) with light of various spectral ranges, —at least one sensor (26) sensitive to light coming from said tooth part, in response to the illumination, to generate for each different color of illumination, at least one measurement signal, —means (30, 32) for converting the measurement signals corresponding to said tooth part, into the coordinates of a measurement point (202), in a shade space in which “reference” points (320, 410, 540) are also defined, corresponding to the preset shades of a dental shade guide, and—search means (114), for the tooth part, for a shade corresponding to the reference point closest to the measurement point, in the shade space.