Abstract:
Apparatus for detecting the presence of a targeted group of hydrocarbons, such as diesel/fuel oil, lube oil, motor oil, hydraulic oil, jet fuel, mineral oil and crude oil in a highly reliable manner even though present at only extremely low concentration. A high power, pulsed light source is focused into a collimated beam that is reduced by a set of filters to a band of pulsed light within a precise set of wavelengths and directed vertically onto a target surface, such as a body of water. All but a precise band of light wavelengths returning to the apparatus are blocked so that substantially all light which then reaches an internal photodetector is within such precise band of wavelengths; as a result receipt of such light programmed intervals following such pulses is indicative of the presence of a member of the targeted hydrocarbon group.
Abstract:
Apparatus for detecting the presence of a targeted group of hydrocarbons, such as diesel/fuel oil, lube oil, motor oil, hydraulic oil, jet fuel, mineral oil and crude oil in a highly reliable manner even though present at only extremely low concentration. A high power, pulsed light source is focused into a collimated beam that is reduced by a set of filters to a band of pulsed light within a precise set of wavelengths and directed vertically onto a target surface, such as a body of water. All but a precise band of light wavelengths returning to the apparatus are blocked so that substantially all light which then reaches an internal photodetector is within such precise band of wavelengths; as a result receipt of such light programmed intervals following such pulses is indicative of the presence of a member of the targeted hydrocarbon group.
Abstract:
Apparatus is provided for optically measuring scalar irradiance or incident flux of radiant energy and for optically measuring naturally occurring chlorophyll fluorescence or upwelling radiance in a parcel of water in a natural setting. From a comparison of the two measurements, rate of primary photosynthetic production is calculated by appropriately programmed computer means. Readout means are provided to indicate the rate of primary production. Further, concentrations of chlorophyll that generate the primary production are also determined by means of the apparatus of this invention. The method of this invention, employing measurement instruments of the type disclosed, enables the determination of concentrations of chlorophyll and primary production in parcels of water.
Abstract:
A high-resolution in situ sensing system and method for providing continuous measurements of at least one dissolved analyte including a sample processing cell having at least a first conduit defining a first passage with at least one selectively-permeable wall capable of passing a portion of the sample liquid into a processing, fluid. The at least one selectively-permeable wall substantially resists flow of another portion of the sample liquid therethrough. Processing fluid is directed through the first conduit while moving the sample liquid and the reagent fluid relative to each other in one of a stationary, concurrent or a countercurrent flow relationship to achieve either partial or full equilibration between the sample liquid and processing fluid to generate at least partially equilibrated reagent fluid and a processed sample in a substantially continuous manner.
Abstract:
The present invention relates to optical measurement devices and systems, and methods of using these systems and devices, and more particularly but not exclusively it relates to a system and apparatus adapted to measure optical properties in-situ.
Abstract:
The photo-coupled data acquisition system can have a container having a contour wall extending upwardly from a closed bottom, for containing a sample therein, a light emitter operable to emit diffused light into the container at an initial intensity, a photodetector operable to detect a reflected intensity of the diffused light, and a structure connected to the contour wall and holding the light emitter and the photodetector at a predetermined height above the bottom of the container and in an orientation facing inside the container, wherein during operation of the system, the initial light intensity is attenuated by the sample and the reflected intensity thereof can be correlated to an information value concerning a variable of interest of the sample.
Abstract:
The photo-coupled data acquisition system can have a container having a contour wall extending upwardly from a closed bottom, for containing a sample therein, a light emitter operable to emit diffused light into the container at an initial intensity, a photodetector operable to detect a reflected intensity of the diffused light, and a structure connected to the contour wall and holding the light emitter and the photodetector at a predetermined height above the bottom of the container and in an orientation facing inside the container, wherein during operation of the system, the initial light intensity is attenuated by the sample and the reflected intensity thereof can be correlated to an information value concerning a variable of interest of the sample.
Abstract:
The photo-coupled data acquisition system can have a container having a contour wall extending upwardly from a closed bottom, for containing a sample therein, a light emitter operable to emit diffused light into the container at an initial intensity, a photodetector operable to detect a reflected intensity of the diffused light, and a structure connected to the contour wall and holding the light emitter and the photodetector at a predetermined height above the bottom of the container and in an orientation facing inside the container, wherein during operation of the system, the initial light intensity is attenuated by the sample and the reflected intensity thereof can be correlated to an information value concerning a variable of interest of the sample.
Abstract:
An anti-fouling submersible liquid sensor (100) is provided according to the invention. The anti-fouling submersible liquid sensor (100) includes a measurement chamber (102) including one or more liquid measurement sensors (121) and at least one chamber aperture (104), at least one gate (107), a gate actuator (128) configured to selectively move the at least one gate (107) between open and closed positions with regard to the at least one chamber aperture (104), and a radiation source (124) configured to inactivate at least a portion of a liquid sample in the measurement chamber (102). The anti-fouling submersible liquid sensor (100) is configured to admit the liquid sample into the measurement chamber (102), perform one or more measurements on the liquid sample, substantially inactivate biological material within the liquid sample with radiation from the radiation source (124), and hold the inactivated liquid sample until a next sample time.
Abstract:
A spectroscopic detector suitable for detecting oil spills in an aquatic environment includes a buoyant container having an optical window; an optical energy generator mounted in the container for directing an optical energy beam through the window; an optical detector for generating an output signal in response to detecting a second optical energy beam received in the container through the window; and a beam splitter for directing the second optical energy beam to the optical detector. The generation of the optical energy beam and operation of the optical detector may be time gated to reduce thermal noise and isolate the sampled optical energy from background light. The optical energy beam preferably has UV components which inhibits the formation of biological organisms on the optical window.