Abstract:
The invention provides a rotary anode which has a graphite body having a plurality of radial slits and a target layer adhered to the upper surface of the graphite body. The target layer is a single layer of tungsten or a tungsten alloy, or a composite layer consisting of the single layer and a molybdenum layer. In the manufacturing process and in use of the rotary anode, a thermal stress which occurs in the graphite body is decreased, thus preventing cracking of the graphite body. The invention also provides a method for manufacturing the rotary anode.
Abstract:
The invention relates to anodes for X-ray tubes and a method of producing same. Several layers are deposited one after another onto a substrate by means of chemical vapour deposition. The proposed combination of layers results in a proper bond to the substrate. The combination comprises a first layer of molybdenum or a molybdenum alloy; a second layer of a tungsten-molybdenum alloy and a third layer of tungsten or a tungsten alloy. The composition of the second layer varies over its thickness.
Abstract:
An anode assembly for a stationary anode x-ray tube wherein a tungsten target insert and an anode supporting metal sleeve are brazed simultaneously to the anode body. An axially tapered metal ferrule having a larger diameter than the sleeve is sealed into the end of a cylindrical glass envelope and the sleeve is inserted concentrically into the smaller end of the ferrule. The joint at the coterminous outside ends of the sleeve and ferrule is welded so as to seal and support the anode assembly in the tube envelope.
Abstract:
A graphite disc assembly for a rotating x-ray tube embodying a graphite substrate and an anode target of either tungsten or tungsten rhenium joined thereto by a layer of rhodium, osmium, ruthenium, platinum, platinum-chromium, or palladium.
Abstract:
An anode is disclosed characterized in that its body is made from molten molybdenum or an alloy based thereon, while the working coating of the anode, exposed to electron bombardment, is built up of a tungsten-rhenium alloy.Disclosure is also made of a method for making an anode, consisting in that the blank for the anode body is made by melting molybdenum or an alloy based thereon under vacuum or in an inert gas medium, while the working coating is built up on the respective anode surface in layers.
Abstract:
A rotary anode of an X-ray tube delivers X-rays from at least the surface struck by electrons and consisting mostly of molybdenum. According to the present invention at least the struck location consists of substantially 75 percent molybdenum and up to 25 percent of a metal having an atomic number of 39 to 46.
Abstract:
The present invention is intended to provide improved patterned X-ray emitting targets as well as X-ray sources that include patterned X-ray emitting targets as well as X-ray reflectance scatterometry (XRS) systems and also including X-ray photoelectron spectroscopy (XPS) systems and X-ray fluorescence (XRF) systems which employ such X-ray emitting targets.
Abstract:
The present disclosure relates to multi-layer X-ray sources having decreased hydrogen within the layer stack and/or tungsten carbide inter-layers between the primary layers of X-ray generating and thermally-conductive materials. The resulting multi-layer target structures allow increased X-ray production, which may facilitate faster scan times for inspection or examination procedures.