Abstract:
A radiation generating apparatus includes: an envelope 1 having a first window 2 through which a radiation is transmitted; and a radiation tube 10 being held within the envelope 1, and having a second window 15 which is arranged in opposition to the first window 2, and through which the radiation is transmitted; and a radiation shielding member 16 thermally connected to the second window 15, having a radiation transmitting hole 21 arranged in communication with the second window 15, and having a protruding portion protruding from the second window 15 toward the first window 2. A thermal conducting member 17 having a higher thermal conductivity rather than that of the radiation shielding member 16 is connected to the protruding portion of the radiation shielding member 16. The radiation generating apparatus can shield an unnecessary radiation and cool a target with a simple structure and is entirely reduced in weight.
Abstract:
An X-ray emitter is suitable for evenly sterilizing large volumes of material in a short time, the emitter having an elongated X-ray target window and correspondingly elongated electron source mounted in a vacuum chamber. The electrons from the electron source are accelerated towards the X-ray target window, which generates X-rays directed outward from the vacuum chamber when irradiated by electrons from within the vacuum chamber. The elongated form of the electron source ensures that an evenly distributed beam of electrons, with a substantially constant linear distribution over the length of the electron source, arrives at the elongated X-ray target window such that a correspondingly even distribution of X-rays is generated from the X-ray target window. The X-ray target window includes a support substrate, and carries an X-ray target layer made of a target material such as tantalum or tungsten on its inner surface. A process for manufacturing the X-ray emitter is also described.
Abstract:
A radiation generator comprising a protective tube housing, cooling liquid and a radiation generating tube, wherein the radiation generating tube is disposed in the protective tube housing filled with the cooling liquid, characterized in that at least one flow channel is integrally molded on the protective tube housing for a cooling medium ducted via an inlet and outlet pipe and serving to cool the interior of the housing.
Abstract:
A rotary anode X-ray tube device includes an X-ray tube equipped with an X-ray output window from which an X-ray is to be outputted, a housing which accommodates the X-ray tube and is filled with a cooling liquid for cooling the X-ray tube, a circulation pump which circulates the cooling liquid filled in the housing, and a subsidiary ejection pipe which guides the cooling liquid circulated by means of the circulation pump to form a flow of the cooling liquid along the X-ray output window, at a position that corresponds to the X-ray output window.
Abstract:
The invention relates to a miniature X-ray source device connected to a distal end of a guiding wire for insertion towards a desired location within an animal body for effecting radiation therapy, said X-ray source device at least comprising a vacuum tube accommodated in said housing containing a cathode and an anode spaced apart at some distance from each other; electron freeing means for freeing electrons from the cathode; electric field means for applying during use a high-voltage electric field between said cathode and said anode for accelerating said free electrons; said vacuum tube being at least partly transparent to X-ray radiation emitted by said anode, as well as cooling means for cooling at least said anode. It is an object to provide a miniature X-ray source device having further limited constructional dimensions and an improved control of the working temperature of at least the anode and hence the working conditions of the miniature X-ray source device. According to the invention the miniature X-ray source device is hereto characterised in that said cooling means are cryogenic cooling means. More in particular in a specific embodiment of said miniature X-ray source device said cooling means comprise at least one supply passageway for supplying pressurized gas towards said anode and at least one exhaust passageway for exhausting said pressurized gas from said anode, said supply passageway and said exhaust passageway being interconnected by means of an expansion chamber surrounding at least partly said anode.
Abstract:
An x-ray tube window cooling assembly (11) for an x-ray tube (18) is provided. The cooling assembly (11) includes an electron collector body (110) coupled to an x-ray tube window (104) and having a first coolant circuit (112). The coolant circuit (112) includes a coolant inlet (114) and a coolant outlet (122). The coolant outlet (122) directs coolant at an x-ray tube window surface (152) to impinge upon and cool the x-ray tube window (104). The coolant is reflected off the reflection surface (146) as to impinge upon and cool the x-ray tube window (104). A method of operating the x-ray tube (18) is also provided.
Abstract:
An X-ray generation apparatus has an anticathode which includes a high thermal conductive substrate and a target of generating X-ray by irradiation of electron. The target penetrates the high heat conductive substrate. Improved cooling efficiency and durability of the anticathode is obtained as well as miniaturization and simplification of the X-ray generation apparatus is achieved.
Abstract:
The present invention is directed to an improved spectographic X-ray tube in which heat dissipation through the beryllium window of the X-ray tube is improved by way of a thin layer disposed on the inside of the beryllium window. The coating layer is of copper and disposed on the inside of the beryllium window for the best effects for improving heat dissipation by the window.
Abstract:
High efficiency X-ray irradiation device and method of using same comprising a transmission tube equipped with a high voltage cathode which faces an anode window. The anode itself is in the form of a thin metallic shell applied to the internal surface of a thin window which is transparent to X-ray radiation. The sample to be irradiated has an irradiation surface, which is placed opposite to and surrounds the face of the anode window. Both the window and the irradiation surface of the sample are formed by continuous surfaces. When performing the method, each of these surfaces is arranged such that if is bounded by a closed curve located in the plane which intersects the zone in which the window is attached to the tube envelope or casing.