Abstract:
A microchannel plate based optical communication receiving system and method of use for extracting embedded information from a covert band of modulated light. The system includes an electrically powered microchannel plate, a sense amplifier in electrical communication with the microchannel plate configured to sense a change in current across a sense resister, a demodulator in electrical communication with the sense amplifier to demodulate the band of modulated light, a data output signal exiting from the demodulator, and a receiver for receiving the data output signal and extracting a piece of covert information.
Abstract:
A scalable vacuum photosensor configured to simplify mass production with a housing having an evacuated first side at an ultrahigh vacuum and a second side which does not require high vacuum. The first side of the device is sealed to a base plate, having a central electron readout element, using an oxide-free sealing technique, with the deposited sealing areas serving as high voltage throughputs from the first to second sides. A conductive photocathode layer on the transparent first side converts photons to photoelectrons and concentrates the photoelectrons upon the readout. The first and second sides together form an electrostatic lens for accelerating and focusing photoelectrons upon the readout, preferably having a scintillator which generates secondary light measured by an optical detector in the second side of the housing.
Abstract:
A detection system and a method for detecting ions which have been separated in a time-of-flight (TOF) mass analyser, comprising an amplifying arrangement for converting ions into packets of secondary particles and amplifying the packets of secondary particles, wherein the amplifying arrangement is arranged so that each packet of secondary particles produces at least a first output and a second output separated in time and so that during the delay between producing the first and second output the first output produced by a packet of secondary particles is used for modulating the second output produced by the same packet. An increased dynamic range of detection and protection of the detection system against intense ion pulses is thereby provided.
Abstract:
A scalable vacuum photosensor configured to simplify mass production with a housing having an evacuated first side at an ultrahigh vacuum and a second side which does not require high vacuum. The first side of the device is sealed to a base plate, having a central electron readout element, using an oxide-free sealing technique, with the deposited sealing areas serving as high voltage throughputs from the first to second sides. A conductive photocathode layer on the transparent first side converts photons to photoelectrons and concentrates the photoelectrons upon the readout. The first and second sides together form an electrostatic lens for accelerating and focusing photoelectrons upon the readout, preferably having a scintillator which generates secondary light measured by an optical detector in the second side of the housing.
Abstract:
A novel detector tube structure (such as for a neutron detection tube) and method of manufacture are described. The novel manufacturing process carries out the electron scrubbing of the detection surface/material after the container enclosure has already been sealed. In this manner, much of the complex manufacturing equipment typically associated with such detection tubes can be eliminated and large numbers of detectors may be manufactured at the same time. The present invention therefore involves a novel detector tube structure and a new method of manufacture for the same.
Abstract:
A tool is provided including a ratchet assembly including a handle grip and a socket; and a clamping assembly including a clamp with a notch; wherein the ratchet assembly is configured to be affixed to the clamping assembly so that a rotatable force applied to the handle grip actuates the clamp.
Abstract:
A photo cathode converts an incident light into photoelectrons. A photomultiplier kept vacuum inside thereof, amplifies photoelectrons converted by the photo cathode. Photoelectrons intensified by the photomultiplier arrives at an output electrode array, and a current signal produced by the photoelectrons arriving at the output electrode array is directly read outside the photomultiplier via metal bulbs or anisotropic conductive rubber.
Abstract:
A detection system and a method for detecting ions which have been separated in a time-of-flight (TOF) mass analyzer, comprising an amplifying arrangement for converting ions into packets of secondary particles and amplifying the packets of secondary particles, wherein the amplifying arrangement is arranged so that each packet of secondary particles produces at least a first output and a second output separated in time and so that during the delay between producing the first and second output the first output produced by a packet of secondary particles is used for modulating the second output produced by the same packet. An increased dynamic range of detection and protection of the detection system against intense ion pulses is thereby provided.
Abstract:
A detection system and a method for detecting ions which have been separated in a time-of-flight (TOF) mass analyzer, comprising an amplifying arrangement for converting ions into packets of secondary particles and amplifying the packets of secondary particles, wherein the amplifying arrangement is arranged so that each packet of secondary particles produces at least a first output and a second output separated in time and so that during the delay between producing the first and second output the first output produced by a packet of secondary particles is used for modulating the second output produced by the same packet. An increased dynamic range of detection and protection of the detection system against intense ion pulses is thereby provided.
Abstract:
A shutter assembly includes a first shutter blade having a first toothed arm extending therefrom and a first light transmitting aperture therein, and a second shutter blade positioned adjacent and parallel to the first shutter blade. The second shutter blade has a second toothed arm extending therefrom and a second light transmitting aperture therein. The first and second shutter blades are supported to allow parallel linear motion. A motor gear is disposed between, and meshed with, the first and second toothed arms such that rotation of the gear causes the first and second shutter blades to move linearly in opposite directions between an open position in which the first and second light transmitting apertures are in an overlapping relationship with respect to one another, and a closed position in which the first and second light transmitting apertures are in a non-overlapping relationship with respect to one another.