Abstract:
Diesel fuel compositions are provided that have unexpectedly beneficial cold flow properties. Methods for forming such diesel fuel compositions are also provided. The improved cold flow properties are achieved in part based on dewaxing of a distillate fraction of the composition. The improved cold flow properties are achieved further in part based on inclusion of a cold flow additive and fatty acid alkyl ester in the composition, such as fatty acid methyl ester.
Abstract:
Copolymers comprising C14 to C50 olefins and at least two different olefindicarboxylic esters and optionally maleic acid or maleic acid derivatives. The olefindicarboxylic esters are firstly esters with linear C18- to C50-alkyl groups and secondly esters with short-chain linear, branched or cyclic alkyl groups, or esters with aromatic groups. The invention further relates to a process for preparing copolymers of this kind and to the use thereof as pour point depressant for crude oil, mineral oil and/or mineral oil products, preferably as pour point depressant for crude oil.
Abstract:
The invention relates to specific copolymers obtainable by co-polymerizing at least the following monomers: •at least one bicyclic (meth)acrylate ester •at least one lower-alkyl (meth)acrylate •optionally, and preferably, at least one aromatic vinyl monomer; and •optionally other ethylenically unsaturated monomers, whereby the copolymer has a weight averaged molecular weight of from 100,000 to 10,000,000 D, determined using GPC-MALS techniques for a solution in THF at 40° C., as well as to the way to synthesize such copolymers and the use of such polymers to modify the rheology of a liquid in which they are soluble.
Abstract:
The present invention relates to cooling additives for middle distillates, containing A) at least one polyester of formula (A1) wherein one of the radicals R1 to R4 represents a linear C16-C40 alkyl or alkenyl radical and the remainder of the radicals R1 to R4 represent, independently of one another, hydrogen or an alkyl radical having 1 to 3 C atoms, R5 is a C—C bond or an alkylene radical having 1 to 6 C atoms, R16 is a hydrocarbon group having 2 to 10 carbon atoms, n is an integer from 1 to 100, m is an integer from 3 to 250, p is 0 or 1, and q is 0 or 1, B) at least one copolymer of ethylene and of at least one ethylenically unsaturated ester, the copolymer having a melt viscosity, measured at 140 DEG C., of at most 5000 mPas, and C) at least one organic solvent.
Abstract:
To provide a gas oil composition providing superior low temperature performance as compared with the conventional techniques.The gas oil composition, wherein a sulfur content is 1 ppm by mass or less, an aromatic content is 1% by mass or less, a C5-C15 paraffin content is 30% to 85% by mass, a C20-C27 paraffin content is 3% to 20% by mass, and a isoparaffin content is 50% to 75% by mass, contains a cold flow improver at 20 ppm to 1000 ppm by mass.
Abstract:
The invention teaches that hydrocarbon compositions may be improved in terms of their stability reserve and in terms of their combustion efficiency, by co-use of a conductivity improver. There is optionally present a combustion improver selected from an iron compound, a manganese compound, a calcium compound and a cerium compound; and/or an organic compound selected from a bicyclic monoterpene, a substituted bicyclic monoterpene, adamantane, a substituted or unsubstituted bicyclic tetraterpene, and propylene carbonate.
Abstract:
This present application relates to microcapsules or compositions containing microcapsules wherein the microcapsules comprise a polymerizable lactamic copolymer. More particularly, certain aspects are directed to the use of polymerizable lactamic copolymers in the formation of coatings on microencapsulated particles. These polymerizable lactamic copolymers can result in surface modified microencapsulated particles that may be anionic, non-ionic, or cationic.
Abstract:
A copolymer obtainable by free-radical copolymerization of (i) monomer units of the structure M1 in which the variables are each hydrogen, alkyl groups, carboxyl groups or carboxyl derivative moieties, and (ii) monomer units of the structure M2 in which R5 is the radical of a carboxylic ester of the formula -A-CO—O—R10 where A is an alkylene group and R10 is a hydrocarbyl radical, and in which R6, R7 and R8 are each hydrogen or alkyl radicals, and subsequent polymer-analogous reaction of the product formed with a long-chain hydrocarbyl alcohol. This copolymer is suitable for improving the cold flow properties of middle distillate fuels, especially those which consist of or comprise biofuel oils.
Abstract:
Esterified polyalkene/UAR copolymer reaction products useful as (1) a friction modifier for lubricating oils such as automatic transmission fluids to improve torque capacity and anti-shudder durability and for continuous variable transmissions (CVTs), (2) a friction modifier for fuels or (3) a cold flow improver for diesel fuels are provided. The esterified copolymer reaction product may be used as is or can be further derivatized (e.g., by post treatment of the esterified copolymer reaction product with, for example, ethylene carbonate or boric acid).