Abstract:
A strain absorption bridge for use in a MEMS package includes a first substrate that is configured to be attachable to a circuit board. A first elastically deformable element is coupled to the first substrate and the first elastically deformable element is configured to be attachable to a MEMS device. Alternatively, the MEMS device may be attached to the first substrate. The elastically deformable element at least partially absorbs and dissipates mechanical strain communicated from the circuit board before the mechanical strain can reach the MEMS device.
Abstract:
A semiconductor die is attached to a substrate by a glass frit layer. Gas that might be trapped between the die and the glass frit layer during firing of the glass frit can escape through passages that are formed against the bottom surface of the die by topographies that extend away from and which are substantially orthogonal to the bottom of the die.
Abstract:
A method for the formation of buried cavities within a semiconductor body envisages the steps of: providing a wafer having a bulk region made of semiconductor material; digging, in the bulk region, trenches delimiting between them walls of semiconductor material; forming a closing layer for closing the trenches in the presence of a deoxidizing atmosphere so as to englobe the deoxidizing atmosphere within the trenches; and carrying out a thermal treatment such as to cause migration of the semiconductor material of the walls and to form a buried cavity. Furthermore, before the thermal treatment is carried out, a barrier layer that is substantially impermeable to hydrogen is formed on the closing layer on top of the trenches.
Abstract:
The invention relates to a circuit board sensor (1) for measuring physical variables, comprising a substrate board (2) and a second board (3) both made of glass, wherein at least the second board (3) is designed such that said board is elastically deformable, wherein the substrate board (2) and the second board (3) each comprise a first and a second side (2a, 2b, 3a, 3b), wherein the second side (2b) of the substrate board (2) and the first side (3a) of the second board (3) are disposed opposite each other, and wherein a spacer element (7) is disposed between the substrate board (2) and the second board (3) and holds the substrate board (2) and the second board (3) at a mutual distance, wherein the substrate board (2) and the second board (3) extend in particular parallel to each other, wherein the second side (2b) of the substrate board (2) comprises a first metal or polymer surface (5a) and the first side (3a) of the second board (3) comprises a second metal or polymer surface (5b), and wherein the first and second metal or polymer surfaces (5a, 5b) are disposed at least partially opposite each other, and wherein conductors (4) are attached on the first side of the substrate board (2), and wherein the substrate board (2) comprises at least one first and one second through-plating (9) disposed such that the first through-plating (9a) electrically conductively connects the conductors (4) to the first metal or polymer surface (5a), and such that the second through-plating (9b) electrically conductively connects the conductor (4) to the second metal or polymer surface (5b).
Abstract:
In some examples, a semiconductor package can be configured to electrically couple to a printed circuit board. The semiconductor package can include: (a) a lid having one or more first electrically conductive leads; (b) a base coupled to the lid and having one or more second electrically conductive leads electrically coupled to the one or more first electrically conductive leads; (c) one or more first semiconductor devices mechanically coupled to the lid and electrically coupled to the one or more first electrically conductive leads; and (d) one or more first micro-electrical-mechanical system devices mechanically coupled to the lid and electrically coupled to the one or more first electrically conductive leads. At least one of the lid or the base can have at least one port hole. The one or more first electrically conductive leads can be configured to couple to the printed circuit board. Other embodiments are disclosed.
Abstract:
A micromechanical component including a first composite of a plurality of semiconductor chips, the first composite having a first front and back surfaces, a second composite of a corresponding plurality of carrier substrates, the second composite having a second front and back surfaces; wherein the first front surface and the second front surface are connected via a structured adhesion promoter layer in such a way that each semiconductor chip is connected, essentially free of cavities, to a corresponding carrier substrate corresponding to a respective micromechanical component.
Abstract:
A system and method for providing a MEMS device with integrated electronics are disclosed. The MEMS device comprises an integrated circuit substrate and a MEMS subassembly coupled to the integrated circuit substrate. The integrated circuit substrate includes at least one circuit coupled to at least one fixed electrode. The MEMS subassembly includes at least one standoff formed by a lithographic process, a flexible plate with a top surface and a bottom surface, and a MEMS electrode coupled to the flexible plate and electrically coupled to the at least one standoff. A force acting on the flexible plate causes a change in a gap between the MEMS electrode and the at least one fixed electrode.
Abstract:
A device (20, 90) includes sensors (28, 30) that sense different physical stimuli. A pressure sensor (28) includes a reference element (44) and a sense element (52), and an inertial sensor (30) includes a movable element (54). Fabrication (110) entails forming (112) a first substrate structure (22, 92) having a cavity (36, 100), forming a second substrate structure (24) to include the sensors (28, 30), and coupling (128) the substrate structures so that the first sensor (28) is aligned with the cavity (36, 100) and the second sensor (30) is laterally spaced apart from the first sensor (28). Forming the second structure (24) includes forming (118) the sense element (52) from a material layer (124) of the second structure (24) and following coupling (128) of the substrate structures, concurrently forming (132) the reference element (44) and the movable element (54) in a wafer substrate (122) of the second structure (24).
Abstract:
A manufacturing method for a micromechanical component having a thin-layer capping. The method includes the following: forming a functional layer on a substrate; structuring the functional layer in first cutout regions having a first width and in regions of the functional layer to be removed having a second width, the second width being substantially greater than the first width; forming a first oxide layer on the structured functional layer; forming a first sealing layer on the thermally oxidized and structured functional layer, the first cutout regions having the first width being sealed; forming a cap layer on the first sealing layer; forming first through holes which extend through the cap layer, the first sealing layer, and the first oxide layer for at least partially exposing the regions of the functional layer to be removed; and selectively removing the regions of the functional layer to be removed, by introducing a first etching medium through the first through holes, resulting in second cutout regions in the functional layer which have the second width.
Abstract:
Ultra-thin semiconductor devices, including piezoresistive sensing elements can be formed in a wafer stack that facilitates handling many thin device dice at a wafer level. Three embodiments are provided to form the thin dice in a wafer stack using three different fabrication techniques that include anodic bonding, adhesive bonding and fusion bonding. A trench is etched around each thin die to separate the thin die from others in the wafer stack. A tether layer, also known as a tether, is used to hold thin dice or dice in a wafer stack. Such as wafer stack holds many thin dice together at a wafer level for handling and enables easier die picking in packaging processes.