Abstract:
Disclosed herein is a nanodevice. Disclosed herein too is a method of manufacturing a nanodevice. In one embodiment the nanodevice includes a first substrate; a second substrate; a nanowire; the nanowire contacting the first substrate and the second substrate; the nanowire comprising a metal, a semi-conductor or a combination thereof.
Abstract:
The present invention relates to a micromechanical sensor for analyzing liquid samples and an array of such sensors. The invention also concerns a method for sensing liquid samples and the use of longitudinal bulk acoustic waves for analyzing liquid phase samples micromechanically. The sensor comprises a body and a planar wave guide portion spaced from the body. At least one electro-mechanical transducer element are used for excitation of longitudinal bulk acoustic waves to the wave guide portion in response to electrical actuation and for converting acoustic waves into electrical signals. The wave guide portion is provided with a sample-receiving zone onto which the sample can be introduced. By means of the invention, the sensitivity of micromechanical liquid sensors can be improved.
Abstract:
The invention relates to a process for fabricating a monocrystalline Si-micromechanical element integrated with a CMOS circuit element within the CMOS technology, wherein a domain of second conducting property is formed within a substrate of first conducting property, here the second conducting property is reverse with respect to the first conducting property, then simultaneously with or immediately after this a domain of monocrystalline Si is formed within the substrate for fabricating a micromechanical element. After this, a CMOS circuit element is fabricated within the substrate through the known steps of CMOS technology and then the circuit element, as well as a portion of said domain for fabricating the micromechanical element that will carry the micromechanical element after its fabrication are covered with a protecting layer. Then by starting a front-side isotropic porous Si-etching from the exposed surface of said domain for fabricating the micromechanical element and by continuing the etching until said portion that will carry the micromechanical element after its fabrication becomes at least in its full extent underetched, a porous Si sacrificial layer is created which at least partially encloses said portion that will carry the micromechanical element after its fabrication. As a next step, the exposed surface of said porous Si sacrificial layer is passivated by applying a metallic thin film thereon and metallic contact pieces of the circuit element through the known steps of CMOS technology are formed. Finally, the metallic thin film that covers the exposed surface of the porous Si sacrificial layer is removed and the micromechanical element is formed by chemically dissolving said porous Si sacrificial layer.
Abstract:
A nanowire sensor with a self-aligned top electrode support insulator, and associated fabrication process are provided. The method begins with a doped silicon-containing substrate. A growth-promotion metal is deposited overlying the substrate. A silicon nitride electrode support is formed overlying the growth-promotion metal. Nanowires are grown from exposed regions of the growth-promotion metal and an insulator is deposited over the nanowires. A top insulator layer is removed to expose tips of the nanowires, and a top electrode metal is deposited overlying the nanowire tips and silicon nitride electrode support. Next, a stack etch is selectively performed, etching down to the level of the growth-promotion metal. A top electrode island is left that is centered on the silicon nitride electrode support and connected to the growth-promotion metal via the nanowires. Then, the sensor is dipped in a buffered hydrofluoric (BHF) solution, to remove any remaining insulator and to expose the nanowires.
Abstract:
A micromechanical sensor and a method for manufacturing same are described. A secure diaphragm restraint, independent of fluctuations in the cavern etching process due to the process technology, and a free design of the diaphragm are made possible by designing a suitable connection of the diaphragm in an oxide layer created by local oxidation. The micromechanical sensor includes, for example, a substrate, an external oxide layer formed in a laterally external area in the substrate, a diaphragm having multiple perforation holes formed in a laterally internal diaphragm area, a cavern etched in the substrate beneath the diaphragm, whereby the diaphragm is suspended in a suspension area of the external oxide layer which tapers toward connecting points of the diaphragm and the diaphragm is situated in its vertical height between a top side and a bottom side of the external oxide layer.
Abstract:
The MEMS Sensor Suite on a Chip provides the capability, monolithically integrated onto one MEMS chip, to sense temperature, humidity, and two axes of acceleration. The device incorporates a MEMS accelerometer, a MEMS humidity sensor, and a MEMS temperature sensor on one chip. These individual devices incorporate proof masses, suspensions, humidity sensitive capacitors, and temperature sensitive resistors (thermistors) all fabricated in a common fabrication process that allows them to be integrated onto one micromachined chip. The device can be fabricated in a simple micromachining process that allows its size to be miniaturized for embedded and portable applications. During operation, the sensor suite chip monitors temperature levels, humidity levels, and acceleration levels in two axes. External circuitry allows sensor readout, range selection, and signal processing.
Abstract:
A micromachined artificial sensor comprises a support coupled to and movable with respect to a substrate. A polymer, high-aspect ratio cilia-like structure is disposed on and extends out-of-plane from the support. A strain detector is disposed with respect to the support to detect movement of the support.
Abstract:
A heat-sensitive apparatus includes a substrate with a top surface, one or more bars being rotatably joined to the surface and having bimorph portions, and a plate rotatably joined to the surface and substantially rigidly joined to the one or more bars. Each bimorph portion bends in response to being heated. The one or more bars and the plate are configured to cause the plate to move farther away from the top surface in response to the one or more bimorph portions being heated.
Abstract:
A heat-sensitive apparatus includes a substrate with a top surface, one or more bars being rotatably joined to the surface and having bimorph portions, and a plate rotatably joined to the surface and substantially rigidly joined to the one or more bars. Each bimorph portion bends in response to being heated. The one or more bars and the plate are configured to cause the plate to move farther away from the top surface in response to the one or more bimorph portions being heated.
Abstract:
A physical quantity sensor includes: a semiconductor substrate; a cavity disposed in the substrate and extending in a horizontal direction of the substrate; a groove disposed on the substrate and reaching the cavity; a movable portion separated by the cavity and the groove so that the movable portion is movably supported on the substrate; and an insulation layer disposed on a bottom of the movable portion so that the insulation layer provides a roof of the cavity.