Abstract:
A MEMS comprising a sacrificial structure, which comprises a faster etching portion and a slower etching portion, exhibits reduced damage to structural features when in forming a cavity in the MEMS by etching away the sacrificial structure. The differential etching rates mechanically decouple structural layers, thereby reducing stresses in the device during the etching process. Methods and systems are also provided.
Abstract:
A method for manufacturing a silicon structure according to the present invention includes, in a so-called dry-etching process wherein gas-switching is employed, the steps of: etching a portion in the silicon region at a highest etching rate under a high-rate etching condition such that the portion does not reach the etch stop layer; subsequently etching under a transition etching condition in which an etching rate is decreased with time from the highest etching rate in the high-rate etching condition; and thereafter, etching the silicon region under a low-rate etching condition of a lowest etching rate in the transition etching condition.
Abstract:
A method of forming an ink supply channel for an inkjet printhead comprises the steps of: (i) providing a wafer having a frontside and a backside; (ii) etching a plurality of frontside trenches into the frontside; (iii) filling each of the trenches with a photoresist plug; (iv) forming nozzle structures on the frontside using MEMS fabrication processes; (v) etching a backside trench from the backside, the backside trench meeting with one or more of the plugs; (vi) removing a portion of each photoresist plug via the backside trench by subjecting the backside to a biased oxygen plasma etch, thereby exposing sidewall features in the backside trench; (vii) modifying the exposed sidewall features; and (viii) removing the photoresist plugs to form the ink supply channel. The ink supply channel connects the backside to the frontside.
Abstract:
A method for fabricating micromachined structures is provided. At least one cavity is formed on a substrate and then a dielectric material different from the material of the substrate is filled in the at least one cavity. Next, a circuitry layer including a first etch-resistant layer and a dielectric layer is formed above the at least one cavity filled with the dielectric material. A portion of the circuitry layer exposed by the first etch-resistant layer is then etched. Finally, the dielectric material in the at least one cavity is etched out.
Abstract:
The present invention relates, in general, to a method for three-dimensional (3D) microfabrication of complex, high aspect ratio structures with arbitrary surface height profiles in metallic materials, and to devices fabricated in accordance with this process. The method builds upon anisotropic deep etching methods for metallic materials previously developed by the inventors by enabling simplified realization of complex, non-prismatic structural geometries composed of multiple height levels and sloping and/or non-planar surface profiles. The utility of this approach is demonstrated in the fabrication of a sloping electrode structure intended for application in bulk micromachined titanium micromirror devices, however such a method could find use in the fabrication of any number of other microactuator, microsensor, microtransducer, or microstructure devices as well.
Abstract:
A MEMS (Microelectromechanical system) device is described. The device includes a first layer on a substrate, and a sacrificial layer on or over the first layer, the first sacrificial layer being configured to be removed in a removal procedure. The device also includes a second layer on or over the first sacrificial layer, where the second layer is spaced apart from the first layer, and a shorting element electrically connecting the first and second layers, where at least a portion of the shorting element is removable in the removal procedure.
Abstract:
The invention relates to a method for producing a component with a first face of a plate-shaped structure involving the following steps: engraving a second face of the structure, which is opposite the first face, on a portion of its surface in order to define an area of reduced thickness, and; inclining the area of reduced thickness with regard to said structure. A component of this type has a recess between the plate-shaped structure and the inclined area of reduced thickness. The inclined area can support active elements that function according to a direction defined by the inclination.
Abstract:
A method for etching a target material in the presence of a structural material with improved selectivity uses a vapor phase etchant and a co-etchant. Embodiments of the method exhibit improved selectivities of from at least about 2-times to at least about 100-times compared with a similar etching process not using a co-etchant. In some embodiments, the target material comprises a metal etchable by the vapor phase etchant. Embodiments of the method are particularly useful in the manufacture of MEMS devices, for example, interferometric modulators. In some embodiments, the target material comprises a metal etchable by the vapor phase etchant, for example, molybdenum and the structural material comprises a dielectric, for example silicon dioxide.
Abstract:
A method of manufacturing a micromechanical element wherein the method comprises the steps of providing a layer of base material, applying at least one at least partly sacrificial layer of an etchable material, patterning the at least partly sacrificial layer, to define at least a portion of the shape of the element, applying at least one structural layer of a mechanical material, patterning the structural layer to form at least a portion of the element, and removing at least partly the patterned at least partly sacrificial layer to release partly free the element. The mechanical material is selected from the group of conductive materials.
Abstract:
The present invention relates, in general, to a method for three-dimensional (3D) microfabrication of complex, high aspect ratio structures with arbitrary surface height profiles in metallic materials, and to devices fabricated in accordance with this process. The method builds upon anisotropic deep etching methods for metallic materials previously developed by the inventors by enabling simplified realization of complex, non-prismatic structural geometries composed of multiple height levels and sloping and/or non-planar surface profiles. The utility of this approach is demonstrated in the fabrication of a sloping electrode structure intended for application in bulk micromachined titanium micromirror devices, however such a method could find use in the fabrication of any number of other microactuator, microsensor, microtransducer, or microstructure devices as well.