Abstract:
A holographic demultiplexor for filtering and spatially positioning individual optical channels, wavelengths, or sets of wavelengths. The holographic demultiplexor includes a volume hologram that includes holograms for redirecting wavelengths included in a light signal. A diffraction grating linearly disperses the light signal and the individual holograms included in the volume hologram spatially reflect the one or more wavelengths back to the diffraction grating as specific angles. The volume hologram spatially reflects the one or more wavelengths such that they are dispersed in two dimensions. The diffraction grating then reflects the two dimensionally dispersed wavelengths to a two dimensional detector array. The detectors of the detector array for adjacent wavelengths can be interleaved to reduce interference. Alternatively, the volume hologram can redirect sets of wavelengths directly to the detector array and the light is not linearly dispersed by a diffraction grating first.
Abstract:
A diffractive optical element device for use in spectroscopy, where broadband light is emitted from a light source (31) towards the optical element (24) and form there is transmitted to at least one detector (29; 29null). The optical element has a plurality of diffractive dispersively focusing patterns, preferably partly integrated into each other, whose respective centres are two-dimensionally offset relative to each other in order to produce a plurality of spectra (25-28), where at least two are separate, but offset relative to each other and/or partly overlapping. In an alternative embodiment, the optical element consists of either one diffractive optical element (60) that is related to a wavelength and produces a spectrum, or at least two diffractive optical elements (60, 61) which are related to respective wavelengths and which produce at least two mutually partly overlapping spectra to give a composite spectrum. Means are provided on or in connection with the optical element in order to produce in said spectrum at least one indication of upper and/or lower wavelength value.
Abstract:
A tunable optical filter for simulating the waveband spectrums of selected substances. The filter includes an optical waveguide with a core material for transmitting light energy and a nominal core refractive index for the core material. Predetermined periodic variations are formed in the core material of the optical waveguide between the input and output ends that alter the core refractive index of the waveguide at the location of the periodic variations. Depending upon the periodic variations, the waveguide produces a predetermined reference waveband spectrum output that matches the waveband spectrum of a selected substance. A modulator is coupled to the waveguide to selectively modulate the periodic variations to intermittently shift the reference waveband spectrum output to fine tune the filter and reduce signal noise. The filter is useful as a reference cell for correlation spectroscopy, DIAL LIDAR, equipment calibration, and other uses where a predetermined or known waveband spectrum is useful or desirable.
Abstract:
A variable spacing diffraction grating is fabricated using micro-electromechanical (MEMS) technology. An array of interconnected beam elements is fabricated into a diffraction grating and mounted in such a manner that one or both ends of the array of beam elements may be actuated using a mechanical actuator. The beam elements may be linear, spiral shaped or arranged in a staircase structure. Applying a force to one or both ends of the array of beam elements changes the spacing of the grating, and presents a different ruling spacing distribution to incoming radiation, thus altering the diffracted angle among individual diffraction orders of the wavelength. Controlling the diffracted signal in this way allows for specific diffraction pass bands to be fixed on a particular detector or a particular area of a detector or optical relay lens or lenses.
Abstract:
An optical reflection device for filtering and spatially positioning individual optical channels or wavelengths. The device includes a plurality of optical members with reflective surfaces and at least one reflective layer located on the reflective surface of each optical member. In addition, the plurality of optical members are interconnected in a manner such that the reflective surfaces are oriented at predetermined slopes with respect to one another. Each reflective layer is configured to reflect a particular wavelength or channel. The plurality of optical members are interconnected in a manner that allows each optical member to reflect an individual channel at a unique angle with respect to the other optical members. This configuration allows the optical reflection device to individually reflect and filter channels that are dispersed from some form of dispersing member, such as a prism or a diffraction grating.
Abstract:
An optical arrangement has a light source which emits coherent light of a specific wavelength. Further provided is an optical Littrow grating, arranged at a specific Littrow angle nullL. It has a multiplicity of parallel diffraction structures following one another periodically at an interval in each case of one specific grating period and arranged on a substrate predetermining a base area. The light wavelength, the grating period and the Littrow angle nullL are tuned to one another in such a way that the grating is used in one of the largest diffraction orders m for light reflected back at the Littrow angle nullL, which still fulfils the condition: (2(mnull1)/mnull1) sin (nullL)null1 An optical arrangement of this kind has an increased reflection efficiency.
Abstract:
A wavefront splitting element includes a diffraction grating for splitting light into multiple beams including transmitting light and reflected light.
Abstract:
A compact, grating spectrometer (1A) particularly adapted for visual observation of the sun's spectrum, from the Calcium K line to the Fraunhofer B line, at very high dispersion. The numerical aperture of the spectrometer's collimating mirror is intentionally mismatched to the numerical aperture of the spectrometer's light-input device in order to exploit, by means of the exceedingly narrow width of the spectrometer's entrance slit (110), the high degree of coherence of the central region of the Airy disk formed by the light-input device. The resulting Fraunhofer diffraction illuminates totally, or nearly totally, the collimating mirror throughout the K-B interval. The human eye's dynamic range is compensated to maintain resolution at the lowest, light levels of the K-B interval. UV spill is suppressed. Both input-optics and slit are shielded against differential heating.
Abstract:
An adaptive spectral imaging device operable to analyze a scene includes a detector having a detector output signal and an optical system disposed in an optical ray path between the scene and the detector to image the scene onto the detector. A controllable optical disperser is disposed along the optical ray path between the scene and the detector. The controllable optical disperser has a disperser input command signal. A controller has a controller output signal responsive to the detector output signal. The controller output signal is provided to the controllable optical disperser as the disperser input command signal.
Abstract:
Concentric spectrometers are plagued with internal reflections due to inherent nature of more than one optical surface possessing a common center of curvature. Reflections from optical surfaces arise when there is a difference or change in the refractive index of the media in which an optical beam or ray of a given wavelength is propagating. Internal reflections in concentric optical systems can produce a myriad of undesirable optical phenomenon at the image plane such as multiple images of an object, interference fringes, and stray light. As a result a loss in contrast or detection limit arise from such phenomenon in which light or detectable radiation that impinges on the image plane does not add to the formation of the intended image, (stray light). The present invention produces high quality images without the optical phenomenon(s) that arise from internal reflections by removing the reflected radiation from propagating through the optical system.