Abstract:
Inverting optics are used to invert, with respect to the dispersion plane, the wavefront of a monochromator employing a beam making more than one pass through the dispersing medium. Further, the inverting functionality can be turned-on or turned-off, thereby reversibly converting between additive and subtractive monochromator architectures. Inversion reversal is accomplished by rotating the inverting optics by 90 degrees coaxially with the beam, either back and forth or monotonically, or by translating portions or all of the inverting optics into and out of the beam. Examples of inverting optics include Dove prisms and equivalent multiple all-reflective surfaces. The system and method can be applied to two-pass and other multi-pass monochromators and to dual and other multiple serial monochromator configurations using diffraction gratings or other dispersing elements.
Abstract:
A monochromator including: a concave mirror which converts incident light into parallel light and emits the parallel light, a plane diffraction grating for diffracting the parallel light emitted from the concave mirror, first reflection means which reflects first light diffracted by the plane diffraction grating and causes the diffracted light to enter the plane diffraction grating as second incident light, second reflection means which reflects second diffracted light and causes the reflected light to enter the plane diffraction grating as third incident light, and an exit slit disposed in the vicinity of a focal point such that third diffracted light is reflected by the first reflection means, to thereby enter the plane diffraction grating as fourth incident light and such that fourth diffracted light is converged at the focal point by the concave mirror, to thereby enable extraction of light having a specific wavelength.
Abstract:
A spectrograph with a first concave spectrographic diffraction grating is positioned to receive light from the input light source is configured to provide a diffracted light output dispersing the components of the input light source in a first direction. The dispersion forms the input light into an intermediate spectra. The intermediate spectra is formed in a focal surface by the once diffracted light. A slit is substantially positioned on the focal surface. A second concave diffraction grating is positioned to receive once diffracted light from the slit and configured to provide a twice diffracted light output, the second concave diffraction grating dispersing the components of the input light source in a second direction. The second direction is different from the first direction, the dispersion forming the input light into an output spectra.
Abstract:
A cross-connect switch for fiber-optic communication networks employing a wavelength dispersive element, such as a grating, and a stack of regular (non-wavelength selective) cross bar switches using two-dimensional arrays of micromachined, electrically actuated, individually-tiltable, controlled deflection micro-mirrors for providing multiport switching capability for a plurality of wavelengths. Using a one-dimensional micromirror array, a fiber-optic based MEMS switched spectrometer that does not require mechanical motion of bulk components or large diode arrays can be constructed with readout capability for WDM network diagnosis or for general purpose spectroscopic applications.
Abstract:
An optical filter for generating a filter output signal from a filter input signal, the filter output signal consisting of light from the filter input signal in a predetermined bandwidth. The filter includes a grating, a first optical assembly and an optical signal path. A portion of the input signal traverses the optical signal path such that it is diffracted from the grating to form a first intermediate beam that is input to the first optical assembly, which generates a second intermediate beam therefrom. The second intermediate beam is directed back to the grating and is diffracted by the grating, a portion of the diffracted second intermediate beam forming a portion of the filter output signal. The second intermediate beam is the inverted image of the first intermediate beam, and hence, the second reflection from the grating compensates for the time dispersion introduced by the first reflection from the grating.
Abstract:
The spectrometer comprises at least a first optical path for a beam of electromagnetic radiation, along which the following are set: a beam-entry slit (1) for an incoming beam; a collimator (5) comprising a convergent spherical mirror for collimation of the incoming beam; a first dispersor (9) for dispersion of the beam into its chromatic components; a first focusing system (19); and a first detector (21) which receives the beam dispersed and focused by said first focusing system. Set along the first optical path there is set at least one first aspherical corrector element (7; 17) comprising an aspherical mirror for correction of spherical aberration.
Abstract:
An apparatus monitors spectral information of an optical transmission system. The apparatus comprises a monolithic spectrometer and at least one transmission signal detector for producing output signals of separated transmission signal components and optical noise.
Abstract:
In order to provide a multi-path monochromator capable of reducing the size of optical parts with a high resolution and a wide dynamic range, the multi-path monochromator has a lens 2 used as a first collimator for converting an incident light into a parallel light, a diffraction grating 4 for diffracting an output light outputted from the lens 2, plane mirrors 3 and 5 for reflecting a diffraction light diffracted by the diffraction grating 4 to return the diffraction light back to a same path, a parabolic mirror 7 used as a second collimator for collecting a diffraction light which is again diffracted by the diffraction grating into which a reflected light is again outputted from the plane mirror, and an output slit positioned at a focal position of the parabolic mirror 7. The parabolic mirror 7 used as the second collimator has a focal length which is longer than a focal length of the lens used as the first collimator.
Abstract:
An optical signal performance monitoring apparatus in a multi-channel optical transmission system and a method for monitoring the optical signal performance are provided. To achieve the above objective, the optical signal performance monitoring apparatus in the multi-channel optical transmission system includes; an optical input unit for controlling the spot size of an inputted multi-channel optical signal and generating the 1st multi-channel beam; an optical collimation and focusing unit for collimating the 1st multi-channel beam and focusing the 2nd multi-channel beam which is divided by wavelength; a diffraction and reflection unit for diffracting and reflecting the 1st collimated multi-channel beam, and generating the 2nd multi-channel beam which is divided by wavelength and is in parallel with the 1st collimated multi-channel beam; an optical detection unit for measuring the intensity of the 2nd multi-channel beam by wavelength, which is focused by wavelength by the optical collimation and focusing unit. The optical signal performance monitoring apparatus can measure the intensity, the a wavelength and the optical signal-to-noise ratio of the multi-channel optical signal by channel simultaneously in real time. In addition, since the optical signal performance monitoring can minimize the impact caused by an aberration and maintain the same f-number in the optical system, a high resolving power and a high dynamic range are guaranteed.
Abstract:
An optical channel monitor is provided that sequentially or selectively filters an optical channel(s) 11 of light from a (WDM) optical input signal 12 and senses predetermined parameters of the each filtered optical signal (e.g., channel power, channel presence, signal-noise-ratio). The OCM 10 is a free-space optical device that includes a collimator assembly 15, a diffraction grating 20 and a mirror 22. A launch pigtail emits into free space the input signal through the collimator assembly 15 and onto the diffraction grating 20, which separates spatially each of the optical channels 11 of the collimated light, and reflects the separated channels of light onto the mirror 22. A null/4 plate 26 is disposed between the mirror 22 and the diffraction grating 20. The mirror reflects the separated light back through the null/4 plate 26 to the diffraction grating 20, which reflects the channels of light back through the collimating lens 18. The lens 18 focuses each separated channel of light (null1-nullN) at a different focal point in space. One of the optical channels 11 is focused onto a receive pigtail 28, which then propagates to a photodetector 30. A pivoting mechanism 34 pivots the diffraction grating 20 or mirror 22 about a pivot point 36 to sequentially or selectively focus each optical channel 11 to the receive pigtail 28. A position sensor 42 detects the displacement of the diffraction grating 24 or mirror.