Abstract:
A semiconductor forensic light is disclosed. The forensic light may use a variety of semiconductor light sources to produce light that contrasts forensic evidence against its background for viewing, photographing and collection. Example semiconductor light sources for the forensic light include light emitting diodes and laser chips. A heat sink, thermoelectric cooler and fan may be included to keep the forensic light cool. A removable light source head may be included on the forensic light to provide for head swapping to give the user access to different wavelengths of light.
Abstract:
A method, a portable device and a measuring instrument for standardization of a satellite measuring instrument to a corresponding master measuring instrument are disclosed. The portable device includes a device for containing a reference material, and an information unit for storing information about the reference material and measurements of the reference material on the master measuring instrument. When placed in a satellite measuring instrument, information from the master instrument stored in the information unit of the portable device is transmitted automatically and wirelessly to the satellite instrument and, together with measurements by the satellite instrument of the reference masterial in the portable device, a standardization model for the satellite instrument and the sample type is obtained.
Abstract:
The invention is directed to a system and method for detecting substances, such as explosives and/or drugs, using, in part, short bursts of energy light from a relatively low energy strobe. Embodiments include coupling the strobe with a detector for use in a portable hand-held unit, or a unit capable of being carried as a backpack. Embodiments further include placement of one or more stroboscopic desorption units and detectors in luggage conveyors systems, carry-on X-ray machines, and check-in counter locations.
Abstract:
The present invention provides a hyperspectral imaging system which demonstrates changes in tissue oxygen delivery, extraction and saturation during shock and resuscitation including an imaging apparatus for performing real-time or near real-time assessment and monitoring of shock, including hemorrhagic, hypovolemic, cardiogenic, neurogenic, septic or burn shock. The information provided by the hyperspectral measurement can deliver physiologic measurements that support early detection of shock and also provide information about likely outcomes.
Abstract:
An apparatus detects fluorescence. The apparatus, also known as a fluorescence scanner, includes an image detector, which is embodied for detecting image data in the wavelength range of fluorescent light, and an excitation light source, which is embodied for generating light in a wavelength range suitable for exciting the fluorescence. The apparatus has a guide beam projector, which is embodied for generating a guide beam from light in the visible wavelength range. The guide beam is aimed such that a projection of the guide beam, a region that is detectable by the image detector is displayed. The guide beam allows exact viewing of a body region to be examined possible for the surgeon, which is not possible on the basis only of the light for exciting a fluorescence, at least whenever the excitation light is in the non-visible wavelength range, such as IR or NIR, or is generated directly during the recording of the fluorescence image.
Abstract:
A multi-channel fluorescence measuring optical system and a multi-channel fluorescence sample analyzer using the optical system are provided. The multi-channel fluorescence measuring optical system, which irradiates light onto a plurality of sample channels and detecting fluorescence radiated from samples, includes: a light source; an integrator for giving the light irradiated from the light source a uniform intensity distribution; a sample holder having a plurality of sample channels on which the samples are mounted, wherein the samples are exited by the light emitted from the integrator; and a beam splitter between the integrator and the sample holder for dividing the incident light in a predetermined ratio. Since the light intensities of fluorescence images are detected using optical fiber bundles and photodiodes, the manufacturing cost can be greatly reduced, and the optical system can be miniaturized.
Abstract:
A forensic light source kit including a portable light source having a self contained battery and a white light source with a plurality of sliding filters for providing selected wavelength illumination, a plurality of barrier filter goggles, a tripod for mounting the light source, and a carrying case therefor.
Abstract:
Highly portable, handheld instrument which can be pointed at the produce to be checked. Light from a source within the instrument is directed onto the produce to induce fluorescent emission from the produce, and fluorescent emissions from the produce are monitored with a detector within the instrument to detect the presence of pesticide residue on the produce. The light from the source is filtered to selectively pass light of a wavelength which induces maximum fluorescent emission from the pesticide to be detected, and the emissions from the produce are filtered to selectively pass emissions having a spectral content characteristic of the pesticide to be detected.
Abstract:
A device, system and method for photometric detection of coagulation in whole blood. The present invention is easy to implement and operate. Furthermore, the present invention has the advantage of being considered to fulfill the desired standard of using photometry for measuring blood coagulation. Also, a photometric coagulation test device for whole blood specimens according to the present invention provides medical accuracy to the home user and, at the same time, is simple to construct. The present invention is also useful for detecting and determining blood agglutination, for example as the results of a serological reaction with an antibody.
Abstract:
The inventive subject matter relates to a competitive method measuring stress biomarkers in bodily fluids including serum, urine and oral fluids including saliva. The inventive method measures biomarkers including cortisol, melatonin and secretory IgA by fluorescence polarization fluorescence lifetime analysis or fluorescence resonance energy transfer.