Abstract:
The present invention is a rotary device that may be adapted for use as a propeller assembly and electrical generator for aerial vehicles or other vehicles intended for fluid media. In one example, the device includes a ring assembly having a plurality of centrally linked blades coupled to a rotatable common hub. Rotary motion of the ring assembly is facilitated by coupling it to an opposed cylinder, opposed piston, internal combustion. The ring assembly includes components of an electrical power generating system so that electrical power is produced from the rotation of the ring assembly.
Abstract:
An aircraft for carrying at least one rigid cargo container includes a beam structure with a forward fuselage attached to the forward end of the beam structure and an empennage attached to the rearward end of the beam structure. Wings and engines are mounted relative to the beam structure and a fairing creates a cargo bay able to receive standard sized intermodal cargo containers. Intermodal cargo containers of light construction and rigid structure are positioned within the cargo bay and securely mounted therein. The beam structure is designed to support flight, takeoffs and landings when the aircraft is empty but requires the added strength of the containers securely mounted to the beam structure when the aircraft is loaded. The aircraft is contemplated to be a drone.
Abstract:
The invention describes a microaircraft, which can be associated for instance to a cellular phone, provided with at least four microrotors actuated with compressed fluid or by ring-shaped electric motors.
Abstract:
VTOL micro-aircraft comprising a first and a second ducted rotor mutually aligned and distanced according to a common axis and whose propellers are driven in rotation in mutually opposite directions. Between the two ducted rotors are positioned a fuselage and a wing system formed by wing profiles forming an X or an H configuration and provided with control flaps.
Abstract:
The present invention provides a position control system for a remote-controlled vehicle, a vehicle operated by the control system, and a method for operating a remote-controlled vehicle. An electromagnetic energy receiver is configured to receive an electromagnetic beam. The electromagnetic energy receiver is further configured to determine a position of the remote-controlled vehicle relative to a position of the electromagnetic beam. The vehicle is directed to maneuver to track the position of the electromagnetic beam.
Abstract:
A ducted air power plant, comprising a motor driven fan (7) situated in a duct (4), the fan (7) having an air intake side and in operation providing a high pressure air stream in the duct, and the fan being located adjacent air splitter mechanism (18), the air splitter mechanism (18) being arranged to divert the air stream into two or more subsidiary streams for delivery to respective jet nozzles (9) of the plant. The plant may be used in a vehicle such as an aircraft in order to provide a vertical take-off and hover capability as well a level flight power source.
Abstract:
A vertical take-off and landing miniature aerial vehicle includes an upper fuselage segment and a lower fuselage segment that extend in opposite directions from a rotor guard assembly. A rotor rotates within the rotor guard assembly between the fuselage segments. Plural turning vanes extend from the rotor guard assembly beneath the rotor. Moreover, plural grid fins extend radially from the lower fuselage segment below the turning vanes. The aerial vehicle is capable of taking off and landing vertically. During flight, the aerial vehicle can hover and transition between a horizontal flight mode and a vertical flight mode using the grid fins.
Abstract:
A flight control system includes a blending algorithm which evaluates the current flight regime and determines the effectiveness of the flight controls to effect the rotational moment of a hybrid vehicle about the yaw axis. Gain schedules for both differential collective and rudder control provide a quantitative measure of control effectiveness. Based on the respective gain schedules, the algorithm determines how much of the control commands should be sent to each control surface. The result is that for a given control command, the same amount of yaw moment will be generated regardless of flight regime. This simplifies the underlying flight control law since the commands it generates are correct regardless of flight regime.
Abstract:
An anti-submarine warfare system includes an unmanned nullsea-sittingnull aircraft housing submarine detecting equipment, the aircraft including a body portion having a catamaran configuration adapted for stably supporting the body portion when sitting in water, the body portion including a fuselage and laterally disposed sponsons connected to the fuselage via platforms, and submarine detecting equipment housed within the fuselage and adapted to be electronically linked to sonobuoys disposed in adjacent water locations.
Abstract:
An unmanned aerial vehicle that includes a fuselage with a partial toroidal forward portion, and an aft portion. A duct is formed through the fuselage and extends from the top to the bottom of the fuselage. Two counter-rotating rotor assemblies are mounted within the duct for providing downward thrust through the duct. The rotor assemblies are supported by a plurality of support struts. At least one engine is mounted within the fuselage and engages with the rotor assemblies. A pusher prop assembly is mounted to the aft portion of the fuselage. The pusher prop assembly is designed to provide forward thrust along the longitudinal axis of the aircraft. The pusher prop assembly includes a drive shaft that is engaged with the engine. A plurality of propellers are attached to and rotated by the drive shaft. A shroud is mounted to the aft portion of the fuselage around the propellers and is operative for channeling the air passing through the propellers in a substantially aft direction. A pair of wings is removably attached to the sides of the fuselage. Each wing preferably includes a fixed portion and a pivotal flaperon portion hinged to the fixed portion. Directional vanes are preferably mounted to the shroud downstream from the propellers and control flow out of the shroud. Deflectors may be mounted to the bottom of the fuselage across a portion of the duct to control flow of air into the duct.