Abstract:
A method for determining a minimum tension compensation stress which will have a membrane of a thickness of less than or equal to one micrometer, secured to a frame, having, in the absence of any external stress, a desired deflection. The membrane can be made as planar as possible in absence of any external stress, and its thickness can be less than or equal to one micrometer.
Abstract:
Ultra-thin semiconductor devices, including piezoresistive sensing elements can be formed in a wafer stack that facilitates handling many thin device dice at a wafer level. Three embodiments are provided to form the thin dice in a wafer stack using three different fabrication techniques that include anodic bonding, adhesive bonding and fusion bonding. A trench is etched around each thin die to separate the thin die from others in the wafer stack. A tether layer, also known as a tether, is used to hold thin dice or dice in a wafer stack. Such as wafer stack holds many thin dice together at a wafer level for handling and enables easier die picking in packaging processes.
Abstract:
A MEMS device assembly (20) includes a MEMS die (22) and an integrated circuit (IC) die (24). The MEMS die (22) includes a MEMS device (36) formed on a substrate (38) and a cap layer (34). A packaging process (72) entails forming the MEMS device (36) on the substrate (38) and removing a material portion of the substrate (38) surrounding the device (36) to form a cantilevered substrate platform (46) at which the MEMS device (36) resides. The cap layer (34) is coupled to the substrate (38) overlying the MEMS device (36). The MEMS die (22) is electrically interconnected with the IC die (24). Molding compound (32) is applied to substantially encapsulate the MEMS die (22), the IC die (24), and interconnects (30) that electrically interconnect the MEMS device (22) with the IC die (24). The cap layer (34) prevents the molding compound (32) from contacting the MEMS device (36).
Abstract:
A method for producing a semiconductor component includes forming an n-doped layer in a p-doped layer of the semiconductor component, wherein the n-doped layer comprises at least one of: a sieve-like layer or a network-like layer. The method also includes porously etching the p-doped layer between the material of the n-doped layer to form a top electrode, and forming a cavity below the n-doped layer.
Abstract:
The fabrication of a semiconductor fixed structure defining a volume, for example of a MEMS micro electro-mechanical system includes, determining thicknesses beforehand depending on the functional distances associated with elements. At least one element is formed on a substrate by thermal oxidation of the substrate so as to form an oxide layer followed by selective etching of the oxide layer so as to define the volume in an etched portion by baring the underlying substrate so as to define the element in an unetched portion, and later oxidation of the substrate so as to form an oxide layer, in order to obtain the elements at the functional distances.
Abstract:
A film-on-wire spacer covers an entire upper surface of a lower electronic component. Accordingly, an upper electronic component is supported above bond pads and lower bond wires of the lower electronic component. This decreases the stress on the upper electronic component, e.g., during wirebonding, and thus decreases the chance of cracking the upper electronic component. Further, the lower bond wires are enclosed in and protected by the film-on-wire spacer. Further, the film-on-wire spacer is thin resulting in a minimum height of the stacked electronic component package.
Abstract:
A substrate-level assembly having a device substrate of semiconductor material with a top face and housing a first integrated device, including a buried cavity formed within the device substrate, and with a membrane suspended over the buried cavity in the proximity of the top face. A capping substrate is coupled to the device substrate above the top face so as to cover the first integrated device in such a manner that a first empty space is provided above the membrane. Electrical-contact elements electrically connect the integrated device with the outside of the substrate-level assembly. In one embodiment, the device substrate integrates at least a further integrated device provided with a respective membrane, and a further empty space, fluidly isolated from the first empty space, is provided over the respective membrane of the further integrated device.
Abstract:
A sensor design, respectively a micromechanical sensor structure for capacitive relative-pressure measurement, that will allow very small pressure differentials to be reliably recorded at high absolute pressures even in harsh, particle-laden measuring environments. For that purpose, the micromechanical sensor element includes a deflectable diaphragm structure which is provided with at least one deflectable electrode, and a fixed support structure for at least one fixed counter-electrode which is located opposite the deflectable electrode. The diaphragm structure includes two mutually parallel configured diaphragms that are joined rigidly to one another via at least one connecting crosspiece, so that each application of force to one of the two diaphragms is directly transmitted to the respective other diaphragm. The first diaphragm is able to be pressurized by a first measuring pressure emanating from the front side of the sensor element, and the second diaphragm is able to be pressurized by a second measuring pressure emanating from the rear side of the sensor element. The fixed counter-electrode is located in the sealed volume between the two diaphragms of the diaphragm structure.
Abstract:
The present invention relates to a manufacturing method for a micromechanical component, a corresponding composite component, and a corresponding micromechanical component. The method has the following steps: providing a first composite (W1; W1′; W1″; W1′″) of a plurality of semiconductor chips (SC1, SC2, SC3; SC2″; SC1′″, SC2′″; SC3′″), the first composite having a first front surface (V1; V1′; V1″; V1′″) and a first back surface (R1; R1′; R1″; R1′″); providing a second composite (W2; W2′) of a corresponding plurality of carrier substrates (SS1, SS2, SS3; SS1′″, SS2′″, SS3′″), the second composite having a second front surface (V2; V2′″) and a second back surface (R2; R2′″); imprinting a structured adhesion promoter layer (SG) on the first front surface (V1; V1′; V1″; V1′″) and/or the second front surface (V2; V2′″), the layer having degassing channels (SK, KG); aligning the first front surface (V1; V1′; V1″; V1′″) and the second front surface (V2; V2′″) corresponding to a plurality of micromechanical components, each having a semiconductor chip (SC1, SC2, SC3; SC2″; SC1′″, SC2′″; SC3′″) and a corresponding carrier substrate (SS1, SS2, SS3; SS1′″, SS2′″, SS3′″); connecting the first front surface (V1; V1′; V1″; V1′″) and the second front surface (V2; V2′″) via the structured adhesion promoter layer (SG) by applying pressure in such a way that each semiconductor chip (SC1, SC2, SC3; SC2″; SC1′″, SC2′″; SC3′″) is connected to a corresponding carrier substrate (SS1, SS2, SS3; SS1′″, SS2′″, SS3′″) corresponding to a respective micromechanical component, so that a gas from the ambient atmosphere is able to escape to the outside through the degassing channels (SK, KG); and separating the micromechanical components.
Abstract:
A method for providing a pressure sensor substrate comprises creating a first cavity that extends inside the substrate in a first direction perpendicular to a main surface of the substrate, and that extends inside the substrate, in a second direction perpendicular to the first direction, into a first venting area of the substrate; creating a second cavity that extends in the first direction inside the substrate, that extends in parallel to the first cavity in the second direction, and that does not extend into the first venting area; and opening the first cavity in the first venting area.