Abstract:
An inexpensive, high-accuracy and highly stable wavelength measuring device and laser device without requiring any complicated and expensive temperature regulating means, wherein an error in the measured wavelength of a to-be-measured light obtained from a photosensor by detecting temperature of a Fabry-Perot etalon with a temperature sensor and operating the error in wavelength from the detected data, caused by thermal expansion of a spacer.
Abstract:
Both the fiber and the bulk Fabry-Perot etalons can be made temperature insensitive by the addition of a compensator element. This element adjusts the optical length of the air-gap in the etalon cavity so as to compensate for any changes in the optical length of the fiber or the etalon slab due to ambient temperature changes.
Abstract:
A rotation tuned optical filter comprises a Fabry-Perot type interferometer disposed between an optical source and an optical receiver. The interferometer filters an input optical signal from the optical source. The input optical signal propagates substantially in a single mode. The interferometer supplies a filtered optical signal to the optical receiver which comprises a receiving surface which integrates the power density of the filtered optical signal. The filter comprises means for modifying the position of the filtered optical signal relative to the receiving surface of the optical receiver.
Abstract:
A measuring device comprises a light source with a wide spectrum feeding an optical sensor through an optical fiber. The sensor comprises an interferometer adjusted to a dull tint and an optical component sensitive to a measured parameter, which may be either a pressure, a measured displacement or an index of refraction of a fluid, a readout device includes the photodetector, a processing unit and an optical wedge for producing fringes, whose lateral positions, in contrast, are representative of the spectrum of the flux leaving the interferometer and analyzed by the photodetector. The processing unit measures the lateral position of the fringe and converts it into a value of the parameter P.
Abstract:
Described is a resonant-cavity p-i-n photodetector based on the reflection or transmission through a Fabry-Perot cavity incorporating non-epitaxial, amorphous layers with alternating refractive index difference which layers are electron-beam deposited on a light-gathering side of a commercially available photodetector. The materials of the Fabry-Perot cavity are selectable from materials, refractive indices of which fall within a large range (from n=1.26 for CaF.sub.2 to n=3.5 for Si) preferably from materials which are depositable in an amorphous state. The material combinations are selected so that only wavelengths resonant with the cavity mode will be detected. The microcavity of the RC-PIN design can also be deposited on any existing detector structure, without modification of semiconductor growth. Such a photodetector would be useful for wavelength de-multiplexing applications. The ease of layer deposition, as well as the high degree of tailorability of spectral position, spectral detection width, and maximum numerical aperture of efficient detection, make the RC-PIN attractive for use in wavelength demultiplexing applications. An exemplary RC-PIN photodetector includes a Si/SiO.sub.2 Fabry-Perot cavity electron-beam deposited on the InP substrate of a commercial InGaAs photodetector. The detection efficiency relative to a reference device was 52 percent at the resonant wavelength of 1350 nm, with a resonance width of 14 nm, and a 4 percent response for off-resonance wavelengths in the 1100-1700 nm range.
Abstract:
Accurate mode partition data from a laser are collected simply and rapidly in accordance with the principles of the invention wherein the laser output is directed to a filter which separates a central longitudinal mode from the side modes. The filter operates to present all side modes in a predetermined wavelength range simultaneously and continuously at the output of the filter. By subsequently comparing the intensity or power in the side modes delivered to the filter output with a predetermined threshold, it is possible to determine the frequency of occurrence and magnitude of mode partition events for side modes in the predetermined wavelength range. In one exemplary embodiment, the filter is realized by the combination of a Fabry-Perot etalon, whose longitudinal axis is angled with respect to the longitudinal axis (propagation axis) of the laser output beam directed onto the filter, together with an external reflector which is parallel to the Fabry-Perot etalon to permit multi-passing of the beam between the Fabry-Perot etalon and the reflector. The beam is reflected by the Fabry-Perot etalon so that after two or more passes within the filter only the side modes are output by the filter. In this arrangement, the filter acts as a notch filter having a wide passband and having an output for the side modes which is separate from an output for the main mode.
Abstract:
A spectrophotometer is composed of a spectrofilter, a plurality of bandpass filters for cutting unnecessary transmission bands, and a CCD photosensor. The photosensor is composed of two sets of photosensors having different sensitivity ranges that overlap at some portion to increase the dynamic range of the device. The handling amount of charges is increased at every portion of the CCD photosensor in order to reduce the influence of the shot noise. Further, various technologies are used to enhance the accuracy and stability of the spectrophoto-measurement.
Abstract:
One aspect of the invention is a Fabry-Perot cavity which has in part a waveguiding portion and in part a nonwaveguiding portion. In this manner, a cavity is constructed whose length would be too short to manipulate effectively if it were comprises exclusively of a waveguiding portion, and whose length might have unacceptable diffraction losses if it were comprised exclusively of a nonwaveguiding portion. In the inventive device the resonant wavelength can be adjusted by varying the length of either the gap or the waveguide or both. The device can be advantageously constructed and aligned using fiber coupling technology.
Abstract:
Interferometric equipment for detecting a substance having a structure preferably a periodic or quasiperiodic absorption spectrum; the equipment includes a source of radiation, a path for that radiation that includes a sample cell with the substance to be detected, an interference filter and a detector, and is improved in that the interference filter is constructed as an electrically tunable filter, including a plate or cell element with semitransparent reflective boundaries serving as electrodes; an electrical voltage is applied to said electrodes such that the transmission characteristics of the filter is varied and the amplitude of the voltage as applied to these electrodes is an indication of that variation; and the thickness of the plate or cell is selected to meet one of the following criteria (i) a distance between the interference lines produced equals a distance of absorption lines within a periodic absorption spectrum of said substance; (ii) the equipment causes a line to be separated from the radiation having a bandwidth which is small as compared with a spacing between two absorption lines of the substance to be found (iii) the equipment causes a line to be separated from the radiation, to overlap an edge of an absorption band of the substance to be directed.
Abstract:
The etendue (throughput or area-solid angle product) of a high resolution interferometer is maintained at a substantially high level by use of a transparent chamber defined by a highly reflective internal surface, the chamber being located at the input to the interferometer. The chamber has an input aperture to admit light into the chamber and an output aperture or exit opening to pass light to the interferometer. By integrating the input light through multiple reflections thereof within the chamber until it exits to the interferometer, the etendue of the latter is substantially enhanced.